FULL ADDER


In [71]:
import copy, numpy as np

In [72]:
np.random.seed(0)

def sigmoid(x):
    return 1/(1+np.exp(-x))

def sigmoid_dev(y):
    return y*(1-y)

def softplus(x):
    return np.log(1+np.exp(x))

def softplus_dev(y):
    return 1/(1+np.exp(-y))

In [73]:
int2bin = {}
bin_dim = 8
N = pow(2, bin_dim)

binary = np.unpackbits(
    np.array([range(N)], dtype=np.uint8).T, 
    axis=1
)
print(binary)


[[0 0 0 ..., 0 0 0]
 [0 0 0 ..., 0 0 1]
 [0 0 0 ..., 0 1 0]
 ..., 
 [1 1 1 ..., 1 0 1]
 [1 1 1 ..., 1 1 0]
 [1 1 1 ..., 1 1 1]]

In [74]:
alpha = 0.1
input_dim = 3
hidden_dim = 8
output_dim = 2

s_0 = 2 * np.random.random((input_dim, hidden_dim)) - 1
s_1 = 2 * np.random.random((hidden_dim, output_dim)) - 1

In [77]:
u_0 = np.zeros_like(s_0)
u_1 = np.zeros_like(s_1)

for i in range(60001):
    a_int = np.random.randint(N // 2)
    a = binary[a_int]
    
    b_int = np.random.randint(N // 2)
    b = binary[b_int]
    
    c_int = a_int + b_int
    c = binary[c_int]
    
    d = np.zeros_like(c)
    
    overallErr = 0
    
    layer_1_val = list()
    layer_2_val = list()
    h_val = list()
    
    layer_1_val.append(np.zeros(hidden_dim))
    layer_2_val.append(np.zeros(output_dim))
    h_val.append(0)
    
    for p in range(bin_dim):
        X = np.array([a[-1 - p], b[-1 - p], h_val[-1]])
        Y = np.array([c[-1 - p]])
        
        layer_1 = sigmoid(np.dot(X, s_0))    
        layer_2 = sigmoid(np.dot(layer_1, s_1))
        #print(layer_1, layer_2)
        layer_1_val.append(copy.deepcopy(layer_1))
        layer_2_val.append(copy.deepcopy(layer_2))
        
        d[-1 - p] = np.round(layer_2[0])
        overallErr += np.abs(c[-1 - p] - layer_2[0])

        
        h_val.append(layer_2[1])
    
    layer_2_det = list()
    
    future_h_val = 0
    future_h_d = 0
    
    for p in range(bin_dim):
        X = np.array([a[p], b[p], h_val[-2 - p]])
        
        layer_1 = layer_1_val[-1 - p]
        
        layer_2 = layer_2_val[-1 - p]
        
        d_d = (c[p] - layer_2[0]) * sigmoid_dev(layer_2[0])
        
        if p == 0:
            h_d = (future_h_val - layer_2[1]) * sigmoid_dev(layer_2[1])
        else:
            h_d = future_h_d
    
        layer_2_d = np.array([d_d, h_d])
        
        layer_1_d = (layer_2_d.dot(s_1.T)) * sigmoid_dev(layer_1)
        
        x_d = (layer_1_d.dot(s_0.T)) * sigmoid_dev(X)
        
        future_h_d = x_d[2]
        
        #print(layer_1.shape, layer_2_d.shape)
        u_1 += np.tensordot(layer_1, layer_2_d, axes=0)
        
        #print(np.tensordot(prev_layer_1, layer_1_d, axes=0))
        u_0 += np.tensordot(X, layer_1_d, axes=0)
        
        
    s_0 += u_0 * alpha
    s_1 += u_1 * alpha
    
    u_0 *= 0
    u_1 *= 0
    
    if i % 5000 == 0:
        print("Error:", overallErr)
        print("Pred:", d)
        print("True:", c)
        #print(s_0, s_1)


Error: 0.456986688278
Pred: [1 0 1 0 1 1 0 0]
True: [1 0 1 0 1 1 0 0]
Error: 0.28954276048
Pred: [1 1 0 0 1 0 1 0]
True: [1 1 0 0 1 0 1 0]
Error: 0.240920883924
Pred: [0 1 1 1 1 0 1 1]
True: [0 1 1 1 1 0 1 1]
Error: 0.181749287743
Pred: [0 1 0 1 0 0 1 1]
True: [0 1 0 1 0 0 1 1]
Error: 0.157691104053
Pred: [0 1 1 0 0 0 1 0]
True: [0 1 1 0 0 0 1 0]
Error: 0.153751223171
Pred: [1 0 1 0 0 1 1 1]
True: [1 0 1 0 0 1 1 1]
Error: 0.125636589312
Pred: [0 1 1 0 1 1 1 0]
True: [0 1 1 0 1 1 1 0]
Error: 0.12029896803
Pred: [0 1 0 0 1 0 0 1]
True: [0 1 0 0 1 0 0 1]
Error: 0.12250935799
Pred: [0 0 1 1 1 1 0 1]
True: [0 0 1 1 1 1 0 1]
Error: 0.117531937375
Pred: [1 0 0 0 1 1 0 1]
True: [1 0 0 0 1 1 0 1]

In [76]:
def pred(a_int, b_int):
    a = binary[a_int]
    b = binary[b_int]
    d = np.zeros_like(c)
    h = 0
    for p in range(bin_dim):
        X = np.array([a[-1 - p], b[-1 - p], h])
        
        layer_1 = sigmoid(np.dot(X, s_0))
        
        layer_2 = sigmoid(np.dot(layer_1, s_1))
        
        d[-1 - p] = np.round(layer_2[0])
        
        h = layer_2[1]
    
    d_int = 0
    for p in range(bin_dim):
        d_int *= 2
        if d[p] == 1:
            d_int += 1
    return d_int

count = 0
for i in range(N // 2):
    for j in range(N // 2):
        if pred(i, j) != i + j:
            count += 1
            print(i, j)
print("DONE", count)


DONE 0