In [1]:
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
iris = load_iris()
X = iris.data[:,2:]
y = iris.target
In [2]:
tree_clf = DecisionTreeClassifier(max_depth=2)
tree_clf.fit(X,y)
Out[2]:
In [4]:
from sklearn.tree import export_graphviz
export_graphviz(
tree_clf,
out_file='iris_tree.dot',
feature_names=iris.feature_names[2:],
class_names=iris.target_names,
rounded=True,
filled=True
)
In [5]:
tree_clf.predict_proba([[5,1.5]])
Out[5]:
In [6]:
tree_clf.predict([[5,1.5]])
Out[6]:
In [ ]: