In [3]:
import pandas as pd
import numpy as np
import csv
df=pd.read_csv('Crime_Data_From_2010_to_Present.csv')
df.head()


Out[3]:
DR Number Date Reported Date Occurred Time Occurred Area ID Area Name Reporting District Crime Code Crime Code Description MO Codes ... Weapon Description Status Code Status Description Crime Code 1 Crime Code 2 Crime Code 3 Crime Code 4 Address Cross Street Location
0 1208575 03/14/2013 03/11/2013 1800 12 77th Street 1241 626 INTIMATE PARTNER - SIMPLE ASSAULT 0416 0446 1243 2000 ... STRONG-ARM (HANDS, FIST, FEET OR BODILY FORCE) AO Adult Other 626.0 NaN NaN NaN 6300 BRYNHURST AV NaN (33.9829, -118.3338)
1 102005556 01/25/2010 01/22/2010 2300 20 Olympic 2071 510 VEHICLE - STOLEN NaN ... NaN IC Invest Cont 510.0 NaN NaN NaN VAN NESS 15TH (34.0454, -118.3157)
2 418 03/19/2013 03/18/2013 2030 18 Southeast 1823 510 VEHICLE - STOLEN NaN ... NaN IC Invest Cont 510.0 NaN NaN NaN 200 E 104TH ST NaN (33.942, -118.2717)
3 101822289 11/11/2010 11/10/2010 1800 18 Southeast 1803 510 VEHICLE - STOLEN NaN ... NaN IC Invest Cont 510.0 NaN NaN NaN 88TH WALL (33.9572, -118.2717)
4 42104479 01/11/2014 01/04/2014 2300 21 Topanga 2133 745 VANDALISM - MISDEAMEANOR ($399 OR UNDER) 0329 ... NaN IC Invest Cont 745.0 NaN NaN NaN 7200 CIRRUS WY NaN (34.2009, -118.6369)

5 rows × 26 columns


In [19]:
import datetime
dates = pd.DatetimeIndex(df['Date Occurred'])

df['Year'],df['Month']=dates.year,dates.month
df.head()


Out[19]:
DR Number Date Reported Date Occurred Time Occurred Area ID Area Name Reporting District Crime Code Crime Code Description MO Codes ... Status Description Crime Code 1 Crime Code 2 Crime Code 3 Crime Code 4 Address Cross Street Location Year Month
0 1208575 03/14/2013 03/11/2013 1800 12 77th Street 1241 626 INTIMATE PARTNER - SIMPLE ASSAULT 0416 0446 1243 2000 ... Adult Other 626.0 NaN NaN NaN 6300 BRYNHURST AV NaN (33.9829, -118.3338) 2013 3
1 102005556 01/25/2010 01/22/2010 2300 20 Olympic 2071 510 VEHICLE - STOLEN NaN ... Invest Cont 510.0 NaN NaN NaN VAN NESS 15TH (34.0454, -118.3157) 2010 1
2 418 03/19/2013 03/18/2013 2030 18 Southeast 1823 510 VEHICLE - STOLEN NaN ... Invest Cont 510.0 NaN NaN NaN 200 E 104TH ST NaN (33.942, -118.2717) 2013 3
3 101822289 11/11/2010 11/10/2010 1800 18 Southeast 1803 510 VEHICLE - STOLEN NaN ... Invest Cont 510.0 NaN NaN NaN 88TH WALL (33.9572, -118.2717) 2010 11
4 42104479 01/11/2014 01/04/2014 2300 21 Topanga 2133 745 VANDALISM - MISDEAMEANOR ($399 OR UNDER) 0329 ... Invest Cont 745.0 NaN NaN NaN 7200 CIRRUS WY NaN (34.2009, -118.6369) 2014 1

5 rows × 28 columns


In [8]:
df['Time Occurred'].describe()


Out[8]:
count    1.552960e+06
mean     1.364355e+03
std      6.465544e+02
min      1.000000e+00
25%      9.300000e+02
50%      1.430000e+03
75%      1.900000e+03
max      2.359000e+03
Name: Time Occurred, dtype: float64

In [48]:
df1=df[['Year','Time Occurred','Crime Code Description']]

df1['Count']=1
df1


C:\Users\hp\Anaconda2\lib\site-packages\ipykernel\__main__.py:3: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  app.launch_new_instance()
Out[48]:
Year Time Occurred Crime Code Description Count
0 2013 1800 INTIMATE PARTNER - SIMPLE ASSAULT 1
1 2010 2300 VEHICLE - STOLEN 1
2 2013 2030 VEHICLE - STOLEN 1
3 2010 1800 VEHICLE - STOLEN 1
4 2014 2300 VANDALISM - MISDEAMEANOR ($399 OR UNDER) 1
5 2013 1400 CRIMINAL HOMICIDE 1
6 2010 2230 VEHICLE - STOLEN 1
7 2010 1600 VEHICLE - STOLEN 1
8 2010 1600 VEHICLE - STOLEN 1
9 2013 800 EMBEZZLEMENT, GRAND THEFT ($950.01 & OVER) 1
10 2010 2100 VEHICLE - STOLEN 1
11 2010 1315 VEHICLE - STOLEN 1
12 2013 1200 THEFT PLAIN - PETTY ($950 & UNDER) 1
13 2013 1200 STALKING 1
14 2013 2030 SHOPLIFTING - PETTY THEFT ($950 & UNDER) 1
15 2013 500 INTIMATE PARTNER - SIMPLE ASSAULT 1
16 2013 1420 BATTERY - SIMPLE ASSAULT 1
17 2013 1430 INTIMATE PARTNER - SIMPLE ASSAULT 1
18 2013 1500 BATTERY - SIMPLE ASSAULT 1
19 2013 1730 EMBEZZLEMENT, PETTY THEFT ($950 & UNDER) 1
20 2013 100 INTIMATE PARTNER - SIMPLE ASSAULT 1
21 2013 2200 DOCUMENT FORGERY / STOLEN FELONY 1
22 2013 1600 INTIMATE PARTNER - SIMPLE ASSAULT 1
23 2013 2010 BATTERY - SIMPLE ASSAULT 1
24 2013 2315 BATTERY - SIMPLE ASSAULT 1
25 2013 1120 INTIMATE PARTNER - SIMPLE ASSAULT 1
26 2010 1230 VEHICLE - STOLEN 1
27 2013 1630 BIKE - STOLEN 1
28 2013 1815 ROBBERY 1
29 2013 1930 INTIMATE PARTNER - SIMPLE ASSAULT 1
... ... ... ... ...
1552930 2017 217 ARSON 1
1552931 2017 330 KIDNAPPING 1
1552932 2017 800 THEFT OF IDENTITY 1
1552933 2017 945 BURGLARY 1
1552934 2017 2000 ASSAULT WITH DEADLY WEAPON, AGGRAVATED ASSAULT 1
1552935 2017 2015 THEFT PLAIN - PETTY ($950 & UNDER) 1
1552936 2017 2000 THEFT FROM MOTOR VEHICLE - PETTY ($950 & UNDER) 1
1552937 2017 2250 OTHER MISCELLANEOUS CRIME 1
1552938 2017 1600 BURGLARY 1
1552939 2017 1200 THEFT FROM MOTOR VEHICLE - PETTY ($950 & UNDER) 1
1552940 2017 1600 THEFT-GRAND ($950.01 & OVER)EXCPT,GUNS,FOWL,LI... 1
1552941 2017 330 INTIMATE PARTNER - SIMPLE ASSAULT 1
1552942 2017 2012 SHOPLIFTING - PETTY THEFT ($950 & UNDER) 1
1552943 2017 2030 ASSAULT WITH DEADLY WEAPON, AGGRAVATED ASSAULT 1
1552944 2017 2000 CHILD STEALING 1
1552945 2017 730 THEFT FROM MOTOR VEHICLE - PETTY ($950 & UNDER) 1
1552946 2017 1230 SHOPLIFTING - PETTY THEFT ($950 & UNDER) 1
1552947 2017 1730 ASSAULT WITH DEADLY WEAPON, AGGRAVATED ASSAULT 1
1552948 2017 1300 LETTERS, LEWD 1
1552949 2017 1440 THEFT FROM MOTOR VEHICLE - PETTY ($950 & UNDER) 1
1552950 2017 930 BATTERY - SIMPLE ASSAULT 1
1552951 2017 1915 VANDALISM - FELONY ($400 & OVER, ALL CHURCH VA... 1
1552952 2017 2350 BATTERY - SIMPLE ASSAULT 1
1552953 2017 720 BATTERY - SIMPLE ASSAULT 1
1552954 2017 720 BATTERY - SIMPLE ASSAULT 1
1552955 2017 1 THEFT OF IDENTITY 1
1552956 2017 2030 ASSAULT WITH DEADLY WEAPON, AGGRAVATED ASSAULT 1
1552957 2017 800 BATTERY - SIMPLE ASSAULT 1
1552958 2016 200 OTHER MISCELLANEOUS CRIME 1
1552959 2017 1600 THEFT OF IDENTITY 1

1552960 rows × 4 columns


In [32]:
df1.to_csv('Crime_Data.csv',encoding='utf-8')

In [41]:
df2=df1[df1['Year']==2017].head(500)
df2.head()


Out[41]:
Year Month Date Occurred Time Occurred Crime Code Description Count
622128 2017 7 07/21/2017 1700 THEFT-GRAND ($950.01 & OVER)EXCPT,GUNS,FOWL,LI... 1
625455 2017 7 07/21/2017 1415 BURGLARY 1
626499 2017 7 07/21/2017 1800 BURGLARY 1
640441 2017 7 07/17/2017 1800 VEHICLE - STOLEN 1
640712 2017 7 07/21/2017 1500 BIKE - STOLEN 1

In [42]:
df2.to_csv('Crime_Data_500.csv',encoding='utf-8')

In [51]:
df3=df1.groupby(['Year','Time Occurred','Crime Code Description']).sum()
df3


Out[51]:
Count
Year Time Occurred Crime Code Description
2010 1 ARSON 1
ASSAULT WITH DEADLY WEAPON, AGGRAVATED ASSAULT 66
ATTEMPTED ROBBERY 12
BATTERY - SIMPLE ASSAULT 138
BATTERY ON A FIREFIGHTER 2
BATTERY WITH SEXUAL CONTACT 28
BIKE - STOLEN 4
BRANDISH WEAPON 3
BUNCO, GRAND THEFT 3
BURGLARY 154
BURGLARY FROM VEHICLE 264
BURGLARY FROM VEHICLE, ATTEMPTED 5
BURGLARY, ATTEMPTED 9
CHILD ABUSE (PHYSICAL) - AGGRAVATED ASSAULT 5
CHILD ABUSE (PHYSICAL) - SIMPLE ASSAULT 20
CHILD ANNOYING (17YRS & UNDER) 15
CHILD NEGLECT (SEE 300 W.I.C.) 29
CHILD STEALING 3
CONSPIRACY 1
CONTRIBUTING 1
COUNTERFEIT 1
CREDIT CARDS, FRAUD USE ($950.01 & OVER) 4
CRIMINAL HOMICIDE 3
CRIMINAL THREATS - NO WEAPON DISPLAYED 54
CRM AGNST CHLD (13 OR UNDER) (14-15 & SUSP 10 YRS OLDER)0060 105
CRUELTY TO ANIMALS 4
DEFRAUDING INNKEEPER/THEFT OF SERVICES, $400 & UNDER 2
DISCHARGE FIREARMS/SHOTS FIRED 1
DISTURBING THE PEACE 5
DOCUMENT FORGERY / STOLEN FELONY 140
... ... ... ...
2017 2355 VIOLATION OF COURT ORDER 1
2356 BATTERY - SIMPLE ASSAULT 1
BURGLARY 1
LETTERS, LEWD 1
VANDALISM - FELONY ($400 & OVER, ALL CHURCH VANDALISMS) 0114 1
2357 ARSON 1
BATTERY - SIMPLE ASSAULT 1
EMBEZZLEMENT, GRAND THEFT ($950.01 & OVER) 1
THEFT FROM MOTOR VEHICLE - PETTY ($950 & UNDER) 1
2358 ASSAULT WITH DEADLY WEAPON ON POLICE OFFICER 1
THEFT PLAIN - PETTY ($950 & UNDER) 1
VANDALISM - FELONY ($400 & OVER, ALL CHURCH VANDALISMS) 0114 2
VEHICLE - STOLEN 1
2359 BATTERY - SIMPLE ASSAULT 5
BIKE - STOLEN 1
BURGLARY 3
BURGLARY FROM VEHICLE 6
DOCUMENT FORGERY / STOLEN FELONY 2
INTIMATE PARTNER - SIMPLE ASSAULT 2
OTHER MISCELLANEOUS CRIME 2
ROBBERY 2
THEFT FROM MOTOR VEHICLE - GRAND ($400 AND OVER) 2
THEFT FROM MOTOR VEHICLE - PETTY ($950 & UNDER) 4
THEFT OF IDENTITY 5
THEFT PLAIN - PETTY ($950 & UNDER) 6
THEFT-GRAND ($950.01 & OVER)EXCPT,GUNS,FOWL,LIVESTK,PROD0036 3
VANDALISM - FELONY ($400 & OVER, ALL CHURCH VANDALISMS) 0114 7
VANDALISM - MISDEAMEANOR ($399 OR UNDER) 3
VEHICLE - STOLEN 11
VIOLATION OF RESTRAINING ORDER 1

129837 rows × 1 columns


In [52]:
df3.to_csv('Crime_Data_Summary.csv',encoding='utf-8')

In [55]:
df4=pd.read_csv('Crime_Data_Summary.csv')
df4.head()


Out[55]:
Year Time Occurred Crime Code Description Count
0 2010 1 ARSON 1
1 2010 1 ASSAULT WITH DEADLY WEAPON, AGGRAVATED ASSAULT 66
2 2010 1 ATTEMPTED ROBBERY 12
3 2010 1 BATTERY - SIMPLE ASSAULT 138
4 2010 1 BATTERY ON A FIREFIGHTER 2

In [77]:
len(df4)


Out[77]:
129837


In [92]:
crime=["BATTERY - SIMPLE ASSAULT","BURGLARY FROM VEHICLE","VEHICLE - STOLEN","BURGLARY","THEFT OF IDENTITY"]

In [107]:
df5=df4[df4['Crime Code Description'].isin(crime)]
df5=df5[df5['Year'].isin([2014,2015,2016])]  
df5


Out[107]:
Year Time Occurred Crime Code Description Count Hour
60735 2014 1 BATTERY - SIMPLE ASSAULT 110 0.01
60744 2014 1 BURGLARY 123 0.01
60745 2014 1 BURGLARY FROM VEHICLE 198 0.01
60795 2014 1 THEFT OF IDENTITY 989 0.01
60805 2014 1 VEHICLE - STOLEN 167 0.01
60809 2014 2 BATTERY - SIMPLE ASSAULT 1 0.02
60810 2014 2 BURGLARY 1 0.02
60816 2014 2 THEFT OF IDENTITY 1 0.02
60819 2014 3 BURGLARY 1 0.03
60820 2014 3 BURGLARY FROM VEHICLE 1 0.03
60827 2014 4 BATTERY - SIMPLE ASSAULT 1 0.04
60828 2014 4 BURGLARY 1 0.04
60835 2014 5 BATTERY - SIMPLE ASSAULT 70 0.05
60842 2014 5 BURGLARY 34 0.05
60843 2014 5 BURGLARY FROM VEHICLE 89 0.05
60882 2014 5 THEFT OF IDENTITY 272 0.05
60891 2014 5 VEHICLE - STOLEN 90 0.05
60905 2014 9 BATTERY - SIMPLE ASSAULT 1 0.09
60906 2014 9 BURGLARY 1 0.09
60910 2014 10 BATTERY - SIMPLE ASSAULT 50 0.10
60915 2014 10 BURGLARY 12 0.10
60916 2014 10 BURGLARY FROM VEHICLE 30 0.10
60944 2014 10 THEFT OF IDENTITY 9 0.10
60952 2014 10 VEHICLE - STOLEN 22 0.10
60955 2014 11 BURGLARY 1 0.11
60963 2014 13 BURGLARY 1 0.13
60964 2014 13 BURGLARY FROM VEHICLE 1 0.13
60970 2014 14 BURGLARY 1 0.14
60975 2014 15 BATTERY - SIMPLE ASSAULT 48 0.15
60980 2014 15 BURGLARY 22 0.15
... ... ... ... ... ...
114699 2016 2345 BATTERY - SIMPLE ASSAULT 58 23.45
114704 2016 2345 BURGLARY 29 23.45
114705 2016 2345 BURGLARY FROM VEHICLE 47 23.45
114740 2016 2345 THEFT OF IDENTITY 21 23.45
114750 2016 2345 VEHICLE - STOLEN 50 23.45
114762 2016 2346 THEFT OF IDENTITY 1 23.46
114763 2016 2347 BURGLARY 1 23.47
114772 2016 2349 THEFT OF IDENTITY 1 23.49
114776 2016 2350 BATTERY - SIMPLE ASSAULT 43 23.50
114781 2016 2350 BURGLARY 20 23.50
114782 2016 2350 BURGLARY FROM VEHICLE 22 23.50
114809 2016 2350 THEFT OF IDENTITY 4 23.50
114818 2016 2350 VEHICLE - STOLEN 38 23.50
114821 2016 2351 BURGLARY 1 23.51
114826 2016 2352 THEFT OF IDENTITY 1 23.52
114829 2016 2353 BURGLARY 3 23.53
114832 2016 2354 BURGLARY 1 23.54
114839 2016 2355 BATTERY - SIMPLE ASSAULT 21 23.55
114843 2016 2355 BURGLARY 7 23.55
114844 2016 2355 BURGLARY FROM VEHICLE 43 23.55
114871 2016 2355 THEFT OF IDENTITY 5 23.55
114880 2016 2355 VEHICLE - STOLEN 44 23.55
114884 2016 2356 BATTERY - SIMPLE ASSAULT 1 23.56
114885 2016 2356 BURGLARY 2 23.56
114892 2016 2357 THEFT OF IDENTITY 1 23.57
114899 2016 2359 BATTERY - SIMPLE ASSAULT 7 23.59
114903 2016 2359 BURGLARY 6 23.59
114904 2016 2359 BURGLARY FROM VEHICLE 19 23.59
114921 2016 2359 THEFT OF IDENTITY 11 23.59
114927 2016 2359 VEHICLE - STOLEN 22 23.59

7273 rows × 5 columns


In [108]:
df5.to_csv('Crime_Data_Top5.csv')

In [133]:
from datetime import * 

def convert_to_time(t):
    second=0
    if len(t)==4:
        hour=int(t[:2])
        minute=int(t[3:])
    elif len(t)>=3:
        hour=int(t[0])
        minute=int(t[1:])
    else:
        hour=0
        minute=int(t)
    new_time = time(hour,minute,second)
    return new_time
print convert_to_time('1800')


18:00:00

In [135]:
#df5['Time Occurred']=df5['Time Occurred'].astype('string').apply(convert_to_time)
df5['Time Occurred']


Out[135]:
60735     00:01:00
60744     00:01:00
60745     00:01:00
60795     00:01:00
60805     00:01:00
60809     00:02:00
60810     00:02:00
60816     00:02:00
60819     00:03:00
60820     00:03:00
60827     00:04:00
60828     00:04:00
60835     00:05:00
60842     00:05:00
60843     00:05:00
60882     00:05:00
60891     00:05:00
60905     00:09:00
60906     00:09:00
60910     00:10:00
60915     00:10:00
60916     00:10:00
60944     00:10:00
60952     00:10:00
60955     00:11:00
60963     00:13:00
60964     00:13:00
60970     00:14:00
60975     00:15:00
60980     00:15:00
            ...   
114699    23:05:00
114704    23:05:00
114705    23:05:00
114740    23:05:00
114750    23:05:00
114762    23:06:00
114763    23:07:00
114772    23:09:00
114776    23:00:00
114781    23:00:00
114782    23:00:00
114809    23:00:00
114818    23:00:00
114821    23:01:00
114826    23:02:00
114829    23:03:00
114832    23:04:00
114839    23:05:00
114843    23:05:00
114844    23:05:00
114871    23:05:00
114880    23:05:00
114884    23:06:00
114885    23:06:00
114892    23:07:00
114899    23:09:00
114903    23:09:00
114904    23:09:00
114921    23:09:00
114927    23:09:00
Name: Time Occurred, dtype: object

In [136]:
df5


Out[136]:
Year Time Occurred Crime Code Description Count Hour
60735 2014 00:01:00 BATTERY - SIMPLE ASSAULT 110 0.01
60744 2014 00:01:00 BURGLARY 123 0.01
60745 2014 00:01:00 BURGLARY FROM VEHICLE 198 0.01
60795 2014 00:01:00 THEFT OF IDENTITY 989 0.01
60805 2014 00:01:00 VEHICLE - STOLEN 167 0.01
60809 2014 00:02:00 BATTERY - SIMPLE ASSAULT 1 0.02
60810 2014 00:02:00 BURGLARY 1 0.02
60816 2014 00:02:00 THEFT OF IDENTITY 1 0.02
60819 2014 00:03:00 BURGLARY 1 0.03
60820 2014 00:03:00 BURGLARY FROM VEHICLE 1 0.03
60827 2014 00:04:00 BATTERY - SIMPLE ASSAULT 1 0.04
60828 2014 00:04:00 BURGLARY 1 0.04
60835 2014 00:05:00 BATTERY - SIMPLE ASSAULT 70 0.05
60842 2014 00:05:00 BURGLARY 34 0.05
60843 2014 00:05:00 BURGLARY FROM VEHICLE 89 0.05
60882 2014 00:05:00 THEFT OF IDENTITY 272 0.05
60891 2014 00:05:00 VEHICLE - STOLEN 90 0.05
60905 2014 00:09:00 BATTERY - SIMPLE ASSAULT 1 0.09
60906 2014 00:09:00 BURGLARY 1 0.09
60910 2014 00:10:00 BATTERY - SIMPLE ASSAULT 50 0.10
60915 2014 00:10:00 BURGLARY 12 0.10
60916 2014 00:10:00 BURGLARY FROM VEHICLE 30 0.10
60944 2014 00:10:00 THEFT OF IDENTITY 9 0.10
60952 2014 00:10:00 VEHICLE - STOLEN 22 0.10
60955 2014 00:11:00 BURGLARY 1 0.11
60963 2014 00:13:00 BURGLARY 1 0.13
60964 2014 00:13:00 BURGLARY FROM VEHICLE 1 0.13
60970 2014 00:14:00 BURGLARY 1 0.14
60975 2014 00:15:00 BATTERY - SIMPLE ASSAULT 48 0.15
60980 2014 00:15:00 BURGLARY 22 0.15
... ... ... ... ... ...
114699 2016 23:05:00 BATTERY - SIMPLE ASSAULT 58 23.45
114704 2016 23:05:00 BURGLARY 29 23.45
114705 2016 23:05:00 BURGLARY FROM VEHICLE 47 23.45
114740 2016 23:05:00 THEFT OF IDENTITY 21 23.45
114750 2016 23:05:00 VEHICLE - STOLEN 50 23.45
114762 2016 23:06:00 THEFT OF IDENTITY 1 23.46
114763 2016 23:07:00 BURGLARY 1 23.47
114772 2016 23:09:00 THEFT OF IDENTITY 1 23.49
114776 2016 23:00:00 BATTERY - SIMPLE ASSAULT 43 23.50
114781 2016 23:00:00 BURGLARY 20 23.50
114782 2016 23:00:00 BURGLARY FROM VEHICLE 22 23.50
114809 2016 23:00:00 THEFT OF IDENTITY 4 23.50
114818 2016 23:00:00 VEHICLE - STOLEN 38 23.50
114821 2016 23:01:00 BURGLARY 1 23.51
114826 2016 23:02:00 THEFT OF IDENTITY 1 23.52
114829 2016 23:03:00 BURGLARY 3 23.53
114832 2016 23:04:00 BURGLARY 1 23.54
114839 2016 23:05:00 BATTERY - SIMPLE ASSAULT 21 23.55
114843 2016 23:05:00 BURGLARY 7 23.55
114844 2016 23:05:00 BURGLARY FROM VEHICLE 43 23.55
114871 2016 23:05:00 THEFT OF IDENTITY 5 23.55
114880 2016 23:05:00 VEHICLE - STOLEN 44 23.55
114884 2016 23:06:00 BATTERY - SIMPLE ASSAULT 1 23.56
114885 2016 23:06:00 BURGLARY 2 23.56
114892 2016 23:07:00 THEFT OF IDENTITY 1 23.57
114899 2016 23:09:00 BATTERY - SIMPLE ASSAULT 7 23.59
114903 2016 23:09:00 BURGLARY 6 23.59
114904 2016 23:09:00 BURGLARY FROM VEHICLE 19 23.59
114921 2016 23:09:00 THEFT OF IDENTITY 11 23.59
114927 2016 23:09:00 VEHICLE - STOLEN 22 23.59

7273 rows × 5 columns


In [137]:
df5.to_csv('Crime_Data_Top5.csv')