In [1]:
import pandas as pd

In [2]:
df = pd.read_csv('features.csv')

In [3]:
df.sample(10)


Out[3]:
match_id start_time lobby_type r1_hero r1_level r1_xp r1_gold r1_lh r1_kills r1_deaths ... dire_boots_count dire_ward_observer_count dire_ward_sentry_count dire_first_ward_time duration radiant_win tower_status_radiant tower_status_dire barracks_status_radiant barracks_status_dire
70150 82508 1448671932 7 51 4 1310 875 9 0 2 ... 3 3 1 -39.0 2679 1 1830 0 63 0
71601 84212 1448753140 1 50 2 484 549 1 0 1 ... 5 2 1 -34.0 1916 0 1792 1974 51 63
76742 90284 1449061992 1 106 4 1693 1621 27 0 0 ... 3 3 1 -37.0 1402 1 2047 1536 63 12
7694 9090 1433934166 7 112 2 334 756 1 0 1 ... 2 2 0 -37.0 2731 0 0 1956 0 63
65144 76608 1448334645 7 72 3 1124 1349 16 1 0 ... 2 3 0 -33.0 2632 1 1972 0 63 0
42935 50494 1445091491 7 99 3 1202 677 4 0 0 ... 3 2 0 42.0 2854 0 0 1828 0 63
38990 45863 1444314851 1 75 3 1003 1051 11 0 0 ... 4 4 0 7.0 1634 0 1926 2046 51 63
64818 76232 1448310820 0 50 3 601 847 0 1 0 ... 2 2 1 9.0 2091 0 4 2046 3 63
80820 95069 1449277774 1 47 3 1057 1325 15 0 1 ... 2 3 0 -14.0 1198 1 2046 6 63 3
57102 67099 1447269895 0 55 3 1404 1003 12 0 0 ... 1 2 1 -7.0 1569 1 1980 0 63 0

10 rows × 109 columns


In [4]:
%pylab inline


Populating the interactive namespace from numpy and matplotlib

In [5]:
pylab.plot([1,2,3,67,3,4,8,9,7,5,4,3,2])


Out[5]:
[<matplotlib.lines.Line2D at 0x2724e059cc0>]

In [21]:
pylab.plot(np.random.random(200),np.random.random(200),c="red",label="line1",alpha=0.2)
pylab.plot(np.random.random(200),np.random.random(200),c="green",label="line2",alpha=0.2,lw=4)
pylab.title("Some graph")
pylab.xlabel("X")
pylab.ylabel("Y")
pylab.legend()


Out[21]:
<matplotlib.legend.Legend at 0x2724f0f8cf8>

In [ ]: