In [6]:
import pandas as pd
import numpy as np
import json

In [8]:
with open("test_resources/test_1.json") as f:
    payload = json.load(f)

In [45]:
heading_data = pd.DataFrame(payload["compass"])
heading_data["date"] = pd.to_datetime(data["date"])
heading_data["heading"] = np.float64(data["heading"])
heading_data = heading_data.set_index("date")

In [146]:
heading_data["test"] = 0.1

In [ ]:
np.de

In [149]:
heading_data.as_matrix()


Out[149]:
array([[  9.30527191e+01,   1.00000000e-01],
       [  9.50284576e+01,   1.00000000e-01],
       [  9.63692169e+01,   1.00000000e-01],
       [  9.49494858e+01,   1.00000000e-01],
       [  9.67889328e+01,   1.00000000e-01],
       [  9.97832565e+01,   1.00000000e-01],
       [  1.02152519e+02,   1.00000000e-01],
       [  1.07053802e+02,   1.00000000e-01],
       [  1.09661003e+02,   1.00000000e-01],
       [  1.12783226e+02,   1.00000000e-01],
       [  1.16312981e+02,   1.00000000e-01],
       [  1.20833298e+02,   1.00000000e-01],
       [  1.24290077e+02,   1.00000000e-01],
       [  1.27298378e+02,   1.00000000e-01],
       [  1.29653763e+02,   1.00000000e-01],
       [  1.31027740e+02,   1.00000000e-01],
       [  1.28165192e+02,   1.00000000e-01],
       [  1.26566368e+02,   1.00000000e-01],
       [  1.25094536e+02,   1.00000000e-01],
       [  1.23238525e+02,   1.00000000e-01],
       [  1.24472710e+02,   1.00000000e-01],
       [  1.27384254e+02,   1.00000000e-01],
       [  1.26274521e+02,   1.00000000e-01],
       [  1.23317726e+02,   1.00000000e-01],
       [  1.21156876e+02,   1.00000000e-01],
       [  1.18873184e+02,   1.00000000e-01],
       [  1.17672836e+02,   1.00000000e-01],
       [  1.15870430e+02,   1.00000000e-01],
       [  1.14142326e+02,   1.00000000e-01],
       [  1.12295044e+02,   1.00000000e-01],
       [  1.09266838e+02,   1.00000000e-01],
       [  1.06351952e+02,   1.00000000e-01],
       [  1.03838638e+02,   1.00000000e-01],
       [  1.02456711e+02,   1.00000000e-01],
       [  1.00518478e+02,   1.00000000e-01],
       [  9.73424606e+01,   1.00000000e-01],
       [  9.37923431e+01,   1.00000000e-01],
       [  9.00946884e+01,   1.00000000e-01],
       [  8.78380127e+01,   1.00000000e-01],
       [  8.61731339e+01,   1.00000000e-01],
       [  8.43943176e+01,   1.00000000e-01],
       [  8.24821548e+01,   1.00000000e-01],
       [  8.00828476e+01,   1.00000000e-01],
       [  7.81978989e+01,   1.00000000e-01],
       [  7.66061172e+01,   1.00000000e-01],
       [  7.43758316e+01,   1.00000000e-01],
       [  7.29160156e+01,   1.00000000e-01],
       [  7.01169891e+01,   1.00000000e-01],
       [  6.74694672e+01,   1.00000000e-01],
       [  6.47354813e+01,   1.00000000e-01],
       [  6.36667252e+01,   1.00000000e-01],
       [  6.48019638e+01,   1.00000000e-01],
       [  6.63147812e+01,   1.00000000e-01],
       [  6.74803848e+01,   1.00000000e-01],
       [  6.91362457e+01,   1.00000000e-01],
       [  7.12299042e+01,   1.00000000e-01],
       [  7.30016708e+01,   1.00000000e-01],
       [  7.47283401e+01,   1.00000000e-01],
       [  8.16324387e+01,   1.00000000e-01],
       [  8.26990814e+01,   1.00000000e-01],
       [  8.46050873e+01,   1.00000000e-01],
       [  8.63301315e+01,   1.00000000e-01],
       [  8.75850830e+01,   1.00000000e-01],
       [  8.91252365e+01,   1.00000000e-01],
       [  9.06973953e+01,   1.00000000e-01],
       [  9.20142288e+01,   1.00000000e-01],
       [  9.08472824e+01,   1.00000000e-01],
       [  8.97698593e+01,   1.00000000e-01],
       [  9.08490601e+01,   1.00000000e-01],
       [  8.93929977e+01,   1.00000000e-01],
       [  8.81525497e+01,   1.00000000e-01],
       [  8.93469620e+01,   1.00000000e-01],
       [  8.69266510e+01,   1.00000000e-01],
       [  8.58178635e+01,   1.00000000e-01],
       [  8.27497482e+01,   1.00000000e-01],
       [  7.91101379e+01,   1.00000000e-01],
       [  7.60213470e+01,   1.00000000e-01],
       [  7.31018829e+01,   1.00000000e-01],
       [  7.07477798e+01,   1.00000000e-01],
       [  6.81037064e+01,   1.00000000e-01],
       [  6.61229248e+01,   1.00000000e-01],
       [  6.34148483e+01,   1.00000000e-01],
       [  6.06496811e+01,   1.00000000e-01],
       [  5.89624023e+01,   1.00000000e-01],
       [  5.58650360e+01,   1.00000000e-01],
       [  5.43641739e+01,   1.00000000e-01],
       [  5.28739815e+01,   1.00000000e-01],
       [  5.41381607e+01,   1.00000000e-01],
       [  5.31357307e+01,   1.00000000e-01],
       [  5.19597855e+01,   1.00000000e-01],
       [  5.05041733e+01,   1.00000000e-01],
       [  4.89459839e+01,   1.00000000e-01],
       [  4.70501060e+01,   1.00000000e-01],
       [  4.58224525e+01,   1.00000000e-01],
       [  4.43981133e+01,   1.00000000e-01],
       [  4.27364998e+01,   1.00000000e-01],
       [  4.08832321e+01,   1.00000000e-01],
       [  3.95963974e+01,   1.00000000e-01],
       [  3.78286819e+01,   1.00000000e-01],
       [  3.65587387e+01,   1.00000000e-01],
       [  3.51020126e+01,   1.00000000e-01],
       [  3.38561363e+01,   1.00000000e-01],
       [  3.11103325e+01,   1.00000000e-01],
       [  2.75868454e+01,   1.00000000e-01],
       [  2.50958958e+01,   1.00000000e-01],
       [  2.31226063e+01,   1.00000000e-01],
       [  2.07737408e+01,   1.00000000e-01],
       [  1.87980003e+01,   1.00000000e-01],
       [  1.62273006e+01,   1.00000000e-01],
       [  1.51343689e+01,   1.00000000e-01],
       [  1.39797697e+01,   1.00000000e-01],
       [  1.18148413e+01,   1.00000000e-01],
       [  1.07252026e+01,   1.00000000e-01],
       [  9.62314129e+00,   1.00000000e-01],
       [  7.95971537e+00,   1.00000000e-01],
       [  6.31624937e+00,   1.00000000e-01],
       [  7.52543592e+00,   1.00000000e-01],
       [  4.43431711e+00,   1.00000000e-01],
       [  5.81540823e+00,   1.00000000e-01],
       [  7.50878763e+00,   1.00000000e-01],
       [  8.78547478e+00,   1.00000000e-01],
       [  1.08427753e+01,   1.00000000e-01],
       [  1.26408577e+01,   1.00000000e-01],
       [  1.46058493e+01,   1.00000000e-01],
       [  1.61408195e+01,   1.00000000e-01],
       [  1.89564018e+01,   1.00000000e-01],
       [  2.15417252e+01,   1.00000000e-01],
       [  2.55105362e+01,   1.00000000e-01],
       [  3.04227276e+01,   1.00000000e-01],
       [  3.55485764e+01,   1.00000000e-01],
       [  3.98523254e+01,   1.00000000e-01],
       [  4.48596840e+01,   1.00000000e-01],
       [  4.80683136e+01,   1.00000000e-01],
       [  5.19309311e+01,   1.00000000e-01],
       [  5.64449730e+01,   1.00000000e-01],
       [  6.15212364e+01,   1.00000000e-01],
       [  6.54505768e+01,   1.00000000e-01],
       [  7.05739975e+01,   1.00000000e-01],
       [  7.54276047e+01,   1.00000000e-01],
       [  7.94929199e+01,   1.00000000e-01],
       [  8.33406754e+01,   1.00000000e-01],
       [  8.66361771e+01,   1.00000000e-01],
       [  8.95467529e+01,   1.00000000e-01],
       [  9.22241440e+01,   1.00000000e-01],
       [  9.59534760e+01,   1.00000000e-01],
       [  9.92036972e+01,   1.00000000e-01],
       [  1.03961029e+02,   1.00000000e-01],
       [  1.08010384e+02,   1.00000000e-01],
       [  1.12920311e+02,   1.00000000e-01],
       [  1.17071617e+02,   1.00000000e-01],
       [  1.21942986e+02,   1.00000000e-01],
       [  1.26936668e+02,   1.00000000e-01],
       [  1.32089767e+02,   1.00000000e-01],
       [  1.35897827e+02,   1.00000000e-01],
       [  1.39374908e+02,   1.00000000e-01],
       [  1.42080597e+02,   1.00000000e-01],
       [  1.45244766e+02,   1.00000000e-01],
       [  1.47072083e+02,   1.00000000e-01],
       [  1.49067474e+02,   1.00000000e-01],
       [  1.50972000e+02,   1.00000000e-01],
       [  1.53684891e+02,   1.00000000e-01],
       [  1.56634521e+02,   1.00000000e-01],
       [  1.58802643e+02,   1.00000000e-01],
       [  1.61727692e+02,   1.00000000e-01],
       [  1.63821228e+02,   1.00000000e-01],
       [  1.65906525e+02,   1.00000000e-01],
       [  1.68026154e+02,   1.00000000e-01],
       [  1.70562897e+02,   1.00000000e-01],
       [  1.72808884e+02,   1.00000000e-01],
       [  1.75619843e+02,   1.00000000e-01],
       [  1.78170532e+02,   1.00000000e-01],
       [  1.80323318e+02,   1.00000000e-01],
       [  1.83238037e+02,   1.00000000e-01],
       [  1.85843750e+02,   1.00000000e-01],
       [  1.88503479e+02,   1.00000000e-01],
       [  1.92244705e+02,   1.00000000e-01],
       [  1.95601883e+02,   1.00000000e-01],
       [  2.00608963e+02,   1.00000000e-01],
       [  2.03038712e+02,   1.00000000e-01],
       [  2.05415375e+02,   1.00000000e-01],
       [  2.08199585e+02,   1.00000000e-01],
       [  2.11428391e+02,   1.00000000e-01],
       [  2.13014847e+02,   1.00000000e-01],
       [  2.14841583e+02,   1.00000000e-01],
       [  2.17270218e+02,   1.00000000e-01],
       [  2.19651291e+02,   1.00000000e-01],
       [  2.22381958e+02,   1.00000000e-01],
       [  2.24736786e+02,   1.00000000e-01],
       [  2.27133850e+02,   1.00000000e-01],
       [  2.28511749e+02,   1.00000000e-01],
       [  2.37167389e+02,   1.00000000e-01],
       [  2.39064011e+02,   1.00000000e-01],
       [  2.40320312e+02,   1.00000000e-01],
       [  2.41579926e+02,   1.00000000e-01],
       [  2.43312469e+02,   1.00000000e-01],
       [  2.44586151e+02,   1.00000000e-01],
       [  2.46452301e+02,   1.00000000e-01],
       [  2.48228912e+02,   1.00000000e-01],
       [  2.50025284e+02,   1.00000000e-01],
       [  2.52307709e+02,   1.00000000e-01],
       [  2.54950668e+02,   1.00000000e-01],
       [  2.56836395e+02,   1.00000000e-01],
       [  2.59381592e+02,   1.00000000e-01],
       [  2.61482117e+02,   1.00000000e-01],
       [  2.63617676e+02,   1.00000000e-01],
       [  2.65024536e+02,   1.00000000e-01],
       [  2.67200897e+02,   1.00000000e-01],
       [  2.68694427e+02,   1.00000000e-01],
       [  2.70051971e+02,   1.00000000e-01],
       [  2.66986298e+02,   1.00000000e-01],
       [  2.68678528e+02,   1.00000000e-01],
       [  2.69796295e+02,   1.00000000e-01],
       [  2.71149170e+02,   1.00000000e-01],
       [  2.70031006e+02,   1.00000000e-01],
       [  2.71470123e+02,   1.00000000e-01],
       [  2.73375732e+02,   1.00000000e-01],
       [  2.74725494e+02,   1.00000000e-01],
       [  2.76768341e+02,   1.00000000e-01],
       [  2.78504028e+02,   1.00000000e-01],
       [  2.76505615e+02,   1.00000000e-01],
       [  2.78097260e+02,   1.00000000e-01],
       [  2.80848389e+02,   1.00000000e-01],
       [  2.83164337e+02,   1.00000000e-01],
       [  2.85077393e+02,   1.00000000e-01],
       [  2.87481995e+02,   1.00000000e-01],
       [  2.89431000e+02,   1.00000000e-01],
       [  2.90808624e+02,   1.00000000e-01],
       [  2.92192474e+02,   1.00000000e-01],
       [  2.93749939e+02,   1.00000000e-01],
       [  2.95863678e+02,   1.00000000e-01],
       [  2.97743103e+02,   1.00000000e-01],
       [  2.95251160e+02,   1.00000000e-01],
       [  2.96296570e+02,   1.00000000e-01],
       [  2.98527893e+02,   1.00000000e-01],
       [  2.99575165e+02,   1.00000000e-01],
       [  2.98459381e+02,   1.00000000e-01],
       [  2.97069244e+02,   1.00000000e-01],
       [  2.94590271e+02,   1.00000000e-01],
       [  2.92030243e+02,   1.00000000e-01],
       [  2.90317719e+02,   1.00000000e-01],
       [  2.88779419e+02,   1.00000000e-01],
       [  2.90889008e+02,   1.00000000e-01],
       [  2.93445038e+02,   1.00000000e-01],
       [  2.94984894e+02,   1.00000000e-01],
       [  2.96739716e+02,   1.00000000e-01],
       [  2.98177155e+02,   1.00000000e-01],
       [  2.99489777e+02,   1.00000000e-01],
       [  3.01305023e+02,   1.00000000e-01],
       [  3.04961334e+02,   1.00000000e-01],
       [  3.08325256e+02,   1.00000000e-01],
       [  3.09878754e+02,   1.00000000e-01],
       [  3.11058655e+02,   1.00000000e-01],
       [  3.12703766e+02,   1.00000000e-01],
       [  3.15730255e+02,   1.00000000e-01],
       [  3.18179810e+02,   1.00000000e-01],
       [  3.19665466e+02,   1.00000000e-01],
       [  3.23544098e+02,   1.00000000e-01],
       [  3.26667145e+02,   1.00000000e-01],
       [  3.30572357e+02,   1.00000000e-01],
       [  3.33513092e+02,   1.00000000e-01],
       [  3.38272888e+02,   1.00000000e-01],
       [  3.40754181e+02,   1.00000000e-01],
       [  3.43679932e+02,   1.00000000e-01],
       [  3.46615753e+02,   1.00000000e-01],
       [  3.49351898e+02,   1.00000000e-01],
       [  3.51913483e+02,   1.00000000e-01],
       [  3.54673859e+02,   1.00000000e-01],
       [  3.56659088e+02,   1.00000000e-01],
       [  3.55511139e+02,   1.00000000e-01],
       [  3.57269440e+02,   1.00000000e-01],
       [  3.59492828e+02,   1.00000000e-01],
       [  2.69677758e+00,   1.00000000e-01],
       [  4.75897121e+00,   1.00000000e-01],
       [  7.68369913e+00,   1.00000000e-01],
       [  1.04439936e+01,   1.00000000e-01],
       [  1.34013977e+01,   1.00000000e-01],
       [  1.57560358e+01,   1.00000000e-01],
       [  1.68571644e+01,   1.00000000e-01],
       [  1.93065090e+01,   1.00000000e-01],
       [  2.12393494e+01,   1.00000000e-01],
       [  2.22917557e+01,   1.00000000e-01],
       [  2.34533920e+01,   1.00000000e-01],
       [  2.59999752e+01,   1.00000000e-01],
       [  2.76910381e+01,   1.00000000e-01],
       [  2.87497196e+01,   1.00000000e-01],
       [  2.67061672e+01,   1.00000000e-01],
       [  2.42487488e+01,   1.00000000e-01],
       [  2.71205807e+01,   1.00000000e-01],
       [  2.88769016e+01,   1.00000000e-01],
       [  2.66718349e+01,   1.00000000e-01],
       [  2.55596066e+01,   1.00000000e-01],
       [  2.72039890e+01,   1.00000000e-01],
       [  2.95887127e+01,   1.00000000e-01],
       [  2.85221577e+01,   1.00000000e-01],
       [  2.59490604e+01,   1.00000000e-01],
       [  2.41546745e+01,   1.00000000e-01],
       [  2.19943180e+01,   1.00000000e-01],
       [  2.04306870e+01,   1.00000000e-01],
       [  1.92450027e+01,   1.00000000e-01],
       [  2.10771694e+01,   1.00000000e-01]])

In [113]:
distance_data = pd.DataFrame(payload["pedometer"])
distance_data["endDate"] = pd.to_datetime(distance_data["endDate"])
distance_data["startDate"] = pd.to_datetime(distance_data["startDate"])

In [135]:
dist_data = distance_data[0:2]

In [140]:
distance_data


Out[140]:
distance endDate floorsAscended floorsDescended startDate steps
0 Optional(10.50349068106152) 2015-07-25 16:01:36 0 0 2015-07-25 16:01:27 13
1 Optional(13.10452706646174) 2015-07-25 16:01:39 0 0 2015-07-25 16:01:27 17
2 Optional(0) 2015-07-25 16:01:41 0 0 2015-07-25 16:01:39 0

In [ ]:


In [128]:
distance_data["endDate"]


Out[128]:
0   2015-07-25 16:01:36
1   2015-07-25 16:01:39
2   2015-07-25 16:01:41
Name: endDate, dtype: datetime64[ns]

In [127]:
distance_data


Out[127]:
distance endDate floorsAscended floorsDescended startDate steps
0 Optional(10.50349068106152) 2015-07-25 16:01:36 0 0 2015-07-25 16:01:27 13
1 Optional(13.10452706646174) 2015-07-25 16:01:39 0 0 2015-07-25 16:01:27 17
2 Optional(0) 2015-07-25 16:01:41 0 0 2015-07-25 16:01:39 0

In [ ]:
distance_data["steps"].shift

In [ ]:
distance_data["steps"].shift

In [74]:
distance_data["steps"].astype(int).resample("1s")


Out[74]:
startDate
2015-07-25 16:01:27    15
2015-07-25 16:01:28   NaN
2015-07-25 16:01:29   NaN
2015-07-25 16:01:30   NaN
2015-07-25 16:01:31   NaN
2015-07-25 16:01:32   NaN
2015-07-25 16:01:33   NaN
2015-07-25 16:01:34   NaN
2015-07-25 16:01:35   NaN
2015-07-25 16:01:36   NaN
2015-07-25 16:01:37   NaN
2015-07-25 16:01:38   NaN
2015-07-25 16:01:39     0
Freq: S, Name: steps, dtype: float64

In [69]:
angle_data = heading_data["heading"].resample("1s")


Out[69]:
date
2015-07-25 16:01:28    102.175964
2015-07-25 16:01:29    118.296115
2015-07-25 16:01:30     75.471761
2015-07-25 16:01:31     78.956342
2015-07-25 16:01:32     33.549365
2015-07-25 16:01:33     14.659729
2015-07-25 16:01:34    106.000578
2015-07-25 16:01:35    202.501206
2015-07-25 16:01:36    259.939720
2015-07-25 16:01:37    285.123961
2015-07-25 16:01:38    299.858951
2015-07-25 16:01:39    200.597217
2015-07-25 16:01:40     25.381208
Freq: S, Name: heading, dtype: float64

In [51]:
%matplotlib inline