In [2]:
%matplotlib inline
In [3]:
from pandas_datareader import data
In [4]:
import datetime as dt
In [36]:
from math import sqrt
In [51]:
from numpy import log, exp
In [137]:
import pandas as pd
In [230]:
start = dt.datetime(2014,11,28)
In [231]:
end = dt.datetime(2016,12,9)
In [232]:
spy = data.DataReader('SPY','yahoo',start,end)['Adj Close']
In [237]:
p = data.DataReader('MO','yahoo',start,end)['Adj Close']
In [238]:
df = pd.DataFrame({'SPY':spy,'Stock':p})
In [239]:
df /= df.iloc[0]
In [240]:
df.plot();
In [221]:
r = df.pct_change().dropna()
In [222]:
r.std()
Out[222]:
In [223]:
df.iloc[-1]
Out[223]:
In [224]:
n = df.count()
In [225]:
(((df.iloc[-1]**(1/n))**252) - 1)/(r.std()*sqrt(252))
Out[225]:
In [42]:
KO = data.DataReader('KO','yahoo',start,end)
In [43]:
p['KO'] = KO['Adj Close']
In [45]:
p['KO'] /= p['KO'].iloc[0]
In [46]:
p['KO'] = log(p['KO'])
In [79]:
p[['SPY','AAPL']].plot();
In [55]:
p.head()
Out[55]:
In [56]:
exp(p).iloc[-1]
Out[56]:
In [67]:
AAPL = data.DataReader('AAPL','yahoo',start,end)
In [68]:
p['AAPL'] = AAPL['Adj Close']
In [69]:
p['AAPL'] /= p['AAPL'].iloc[0]
In [70]:
p['AAPL'] = log(p['AAPL'])
In [ ]: