In [1]:
import pandas as pd
In [2]:
sep_loss = pd.read_csv('losses_Sep2019.csv', header=None)
sep_loss.columns = ['RUN', 'LOSS']
sep_loss['STAGE'] = sep_loss['RUN'].str.count('\.')
In [3]:
# sep_loss = sep_loss[(sep_loss['STAGE'] == 4) & (sep_loss['LOSS'] > 0.02)]
sep_loss
Out[3]:
In [4]:
nov_loss = pd.read_csv('losses_Nov2019.csv', header=None)
nov_loss.columns = ['RUN', 'LOSS']
nov_loss['STAGE'] = nov_loss['RUN'].str.count('\.')
In [5]:
nov_loss
Out[5]:
In [6]:
nov_loss_st = pd.read_csv('losses_Nov2019_stepped.csv', header=None)
nov_loss_st.columns = ['RUN', 'LOSS']
nov_loss_st['STAGE'] = nov_loss_st['RUN'].str.count('\.')
nov_loss_st
Out[6]:
In [7]:
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
In [8]:
%matplotlib inline
In [14]:
font = {'family' : 'normal',
'weight' : 'bold',
'size' : 22}
matplotlib.rc('font', **font)
fig, ax = plt.subplots(figsize=(16,10))
ax.plot(sep_loss['STAGE'], sep_loss['LOSS'], color='r', marker='o',linestyle='-', linewidth=0.3, alpha=0.6, label='Sep')
# ax.plot(nov_loss['STAGE'], nov_loss['LOSS'], color='b', marker='>',linestyle='-', linewidth=0.3, alpha=0.6, label='Nov')
# ax.plot(nov_loss_st['STAGE'], nov_loss_st['LOSS'], color='g', marker='x', linestyle='-', linewidth=0.3, alpha=0.6, label='Nov-Stepped')
ax.set_xlabel('stage')
ax.set_ylabel('val_loss')
# ax.legend()
plt.show()
In [10]:
mean_sep = sep_loss.groupby('STAGE')['LOSS'].mean()
mean_nov = nov_loss.groupby('STAGE')['LOSS'].mean()
mean_nov2 = nov_loss_st.groupby('STAGE')['LOSS'].mean()
std_sep = sep_loss.groupby('STAGE')['LOSS'].std()
std_nov = nov_loss.groupby('STAGE')['LOSS'].std()
std_nov2 = nov_loss_st.groupby('STAGE')['LOSS'].std()
In [11]:
fig, ax1 = plt.subplots(figsize=(16,10))
ax1.errorbar(mean_sep.index, mean_sep, xerr=0.1, yerr=std_sep, color='r', linestyle='', label='Sep')
ax1.errorbar(mean_nov.index, mean_nov, xerr=0.1, yerr=std_nov, color='b', linestyle='', label='Nov-early-stop')
ax1.errorbar(mean_nov2.index, mean_nov2, xerr=0.1, yerr=std_nov2, color='g', linestyle='', label='Nov-Stepped')
ax1.set_xlabel('Stage')
ax1.set_ylabel('Loss')
ax1.legend(loc='best', prop={'size': 10})
plt.show()
In [27]:
sep_loss[(sep_loss['LOSS'] < 0.005) & (sep_loss['STAGE'] == 5)]
Out[27]:
In [17]:
nov_loss[nov_loss['LOSS'] < 0.0055]
Out[17]:
In [32]:
nov_loss_st[(nov_loss_st['LOSS'] < 0.005) & (nov_loss_st['STAGE'] == 5)]
Out[32]:
In [23]:
nov_loss_st[nov_loss_st['STAGE'] == 5]
Out[23]:
In [38]:
sep_loss[(sep_loss['RUN'] == '1.3.1.2.1') | (sep_loss['RUN'] == '1.3.1.2') | (sep_loss['RUN'] == '1.3.1')| (sep_loss['RUN'] == '1.3')]
Out[38]:
In [39]:
nov_loss[(nov_loss['RUN'] == '1.3.1.2.1') | (nov_loss['RUN'] == '1.3.1.2') | (nov_loss['RUN'] == '1.3.1')| (nov_loss['RUN'] == '1.3')]
Out[39]:
In [40]:
nov_loss_st[(nov_loss_st['RUN'] == '1.3.1.2.1') | (nov_loss_st['RUN'] == '1.3.1.2') | (nov_loss_st['RUN'] == '1.3.1')| (nov_loss_st['RUN'] == '1.3')]
Out[40]:
In [ ]: