In [1]:
import os
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
import pandas as pd
%matplotlib inline
In [43]:
path = os.path.join(os.getcwd(), "..", "param", "dummy", "beta.dat")
beta = pd.read_table(path, sep=" ", header = None)
In [44]:
num_topics = beta.shape[0]
num_words = beta.shape[1]
plt.figure(1, figsize=(10,10))
colors = iter(cm.rainbow(np.linspace(0, 1, num_topics+1)))
word_ids = xrange(num_words)
for k in xrange(num_topics):
plt.bar(word_ids, beta.loc[k].values, color=next(colors), alpha=0.4, edgecolor = "none")
plt.xlim(0, num_words)
plt.show()
In [42]:
num_topics = beta.shape[0]
num_words = beta.shape[1]
plt.figure(1, figsize=(10,10))
colors = iter(cm.rainbow(np.linspace(0, 1, num_topics+1)))
word_ids = xrange(num_words)
plt.bar(word_ids, beta.loc[1].values, color=next(colors), alpha=0.4, edgecolor = "none")
plt.xlim(0, num_words)
plt.show()
In [ ]:
for i in xrange(100):
path = os.path.join(os.getcwd(), "..", "param", "dummy", str(i)+".dat")
beta = pd.read_table(path, sep=" ", header = None)
num_topics = beta.shape[0]
num_words = beta.shape[1]
plt.figure(1, figsize=(10,10))
colors = iter(cm.rainbow(np.linspace(0, 1, num_topics+1)))
word_ids = xrange(num_words)
for k in xrange(num_topics):
plt.bar(word_ids, beta.loc[k].values, color=next(colors), alpha=0.4, edgecolor = "none")
plt.xlim(0, num_words)
path = os.path.join(os.getcwd(), "img", str(i)+".png")
plt.savefig(path)