In [1]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import cross_validation
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.calibration import CalibratedClassifierCV
from sklearn.svm import SVC
from sklearn import grid_search
from sklearn.metrics import log_loss
from sklearn.cross_validation import train_test_split
import xgboost as xgb

from sklearn.metrics import roc_auc_score, log_loss
from sklearn import metrics

In [2]:
train = pd.read_csv('numerai_training_data.csv')
test = pd.read_csv('numerai_tournament_data.csv')
example = pd.read_csv('example_predictions.csv')

#train = train.iloc[10000:80000]

In [3]:
X = train.drop('target', axis=1)
y = train.target

id_test = test.t_id
df_test = test.drop('t_id', axis=1, inplace = True)


X_fit, X_eval, y_fit, y_eval= train_test_split(
    X, y, test_size=0.10, random_state=1
)

In [23]:
rf = RandomForestClassifier(n_estimators=1000, n_jobs=4, max_depth =7)
rf.fit(X_fit, y_fit)
print 'RandomForestClassifier ', (log_loss(y_eval, rf.predict_proba(X_eval)))

submission = pd.DataFrame({"t_id":id_test, "probability":rf.predict_proba(test)[:,1]})
submission.to_csv("submission_rf_5.csv", index=False)


RandomForestClassifier  0.691367878221

In [24]:
lr = LogisticRegression()

CVscores = cross_validation.cross_val_score(lr, X, y, scoring='log_loss', cv=5)

# search for the regularization parameter
Cs = 10**np.linspace(-4, 4, num=15)
grid = {'C': Cs}
gridsearch = grid_search.GridSearchCV(lr, grid, scoring='log_loss', cv=5)
gridsearch.fit(X, y)
gridscores = [-x.mean_validation_score for x in gridsearch.grid_scores_]

C = Cs[np.argmin(gridscores)]

# refit the model with the new regularization parameter
lrCV = LogisticRegression(C=C)
lrCV.fit(X_fit, y_fit)

# write log to file
logloss_train = log_loss(y_fit, lrCV.predict_proba(X_fit))
logloss_val = log_loss(y_eval, lrCV.predict_proba(X_eval))

print 'logloss_train: ', logloss_train
print 'logloss_val: ', logloss_val


logloss_train:  0.691439680306
logloss_val:  0.691449256838

In [25]:
#n_estimators and early_stopping_rounds should be increased
clf = xgb.XGBClassifier(missing=np.nan, max_depth=3, 
                        n_estimators=1500, learning_rate=0.005, gamma =0.3, min_child_weight = 3,
                        subsample=0.9, colsample_bytree=0.8, seed=2100,objective= 'binary:logistic')
# 'colsample_bytree': 0.8,
#   'gamma': 0.3,
#   'max_depth': 4,
#   'min_child_weight': 3,
#   'subsample': 0.9


# fitting
clf.fit(X_fit, y_fit, early_stopping_rounds=150,  eval_metric="logloss", eval_set=[(X_eval, y_eval)])

# scores
from  sklearn.metrics import log_loss
log_train = log_loss(y_fit, clf.predict_proba(X_fit)[:,1])
log_valid = log_loss(y_eval, clf.predict_proba(X_eval)[:,1])


print('\n-----------------------')
print('  logloss train: %.5f'%log_train)
print('  logloss valid: %.5f'%log_valid)
print('-----------------------')

print('\nModel parameters...')
print(clf.get_params())

#print y_pred
# y_pred= clf.predict_proba(test)[:,1]

# submission = pd.DataFrame({"t_id":id_test, "probability":y_pred})
# submission.to_csv("submission_xgboost.csv", index=False)


Will train until validation_0 error hasn't decreased in 150 rounds.
[0]	validation_0-logloss:0.693143
[1]	validation_0-logloss:0.693119
[2]	validation_0-logloss:0.693123
[3]	validation_0-logloss:0.693103
[4]	validation_0-logloss:0.693102
[5]	validation_0-logloss:0.693087
[6]	validation_0-logloss:0.693077
[7]	validation_0-logloss:0.693072
[8]	validation_0-logloss:0.693058
[9]	validation_0-logloss:0.693051
[10]	validation_0-logloss:0.693039
[11]	validation_0-logloss:0.693033
[12]	validation_0-logloss:0.693023
[13]	validation_0-logloss:0.693014
[14]	validation_0-logloss:0.693004
[15]	validation_0-logloss:0.692996
[16]	validation_0-logloss:0.692993
[17]	validation_0-logloss:0.692982
[18]	validation_0-logloss:0.692973
[19]	validation_0-logloss:0.692961
[20]	validation_0-logloss:0.692954
[21]	validation_0-logloss:0.692946
[22]	validation_0-logloss:0.692939
[23]	validation_0-logloss:0.692928
[24]	validation_0-logloss:0.692921
[25]	validation_0-logloss:0.692911
[26]	validation_0-logloss:0.692902
[27]	validation_0-logloss:0.692892
[28]	validation_0-logloss:0.692882
[29]	validation_0-logloss:0.692874
[30]	validation_0-logloss:0.692868
[31]	validation_0-logloss:0.692861
[32]	validation_0-logloss:0.692852
[33]	validation_0-logloss:0.692844
[34]	validation_0-logloss:0.692837
[35]	validation_0-logloss:0.692832
[36]	validation_0-logloss:0.692824
[37]	validation_0-logloss:0.692818
[38]	validation_0-logloss:0.692808
[39]	validation_0-logloss:0.692803
[40]	validation_0-logloss:0.692796
[41]	validation_0-logloss:0.692789
[42]	validation_0-logloss:0.692781
[43]	validation_0-logloss:0.692771
[44]	validation_0-logloss:0.692761
[45]	validation_0-logloss:0.692751
[46]	validation_0-logloss:0.692743
[47]	validation_0-logloss:0.692739
[48]	validation_0-logloss:0.692732
[49]	validation_0-logloss:0.692724
[50]	validation_0-logloss:0.692717
[51]	validation_0-logloss:0.692711
[52]	validation_0-logloss:0.692709
[53]	validation_0-logloss:0.692704
[54]	validation_0-logloss:0.692698
[55]	validation_0-logloss:0.692695
[56]	validation_0-logloss:0.692686
[57]	validation_0-logloss:0.692683
[58]	validation_0-logloss:0.692678
[59]	validation_0-logloss:0.692672
[60]	validation_0-logloss:0.692665
[61]	validation_0-logloss:0.692657
[62]	validation_0-logloss:0.692651
[63]	validation_0-logloss:0.692648
[64]	validation_0-logloss:0.692643
[65]	validation_0-logloss:0.692640
[66]	validation_0-logloss:0.692629
[67]	validation_0-logloss:0.692625
[68]	validation_0-logloss:0.692618
[69]	validation_0-logloss:0.692613
[70]	validation_0-logloss:0.692607
[71]	validation_0-logloss:0.692601
[72]	validation_0-logloss:0.692595
[73]	validation_0-logloss:0.692588
[74]	validation_0-logloss:0.692583
[75]	validation_0-logloss:0.692577
[76]	validation_0-logloss:0.692572
[77]	validation_0-logloss:0.692570
[78]	validation_0-logloss:0.692566
[79]	validation_0-logloss:0.692561
[80]	validation_0-logloss:0.692556
[81]	validation_0-logloss:0.692550
[82]	validation_0-logloss:0.692547
[83]	validation_0-logloss:0.692541
[84]	validation_0-logloss:0.692539
[85]	validation_0-logloss:0.692532
[86]	validation_0-logloss:0.692523
[87]	validation_0-logloss:0.692520
[88]	validation_0-logloss:0.692515
[89]	validation_0-logloss:0.692510
[90]	validation_0-logloss:0.692506
[91]	validation_0-logloss:0.692499
[92]	validation_0-logloss:0.692494
[93]	validation_0-logloss:0.692489
[94]	validation_0-logloss:0.692485
[95]	validation_0-logloss:0.692482
[96]	validation_0-logloss:0.692477
[97]	validation_0-logloss:0.692473
[98]	validation_0-logloss:0.692466
[99]	validation_0-logloss:0.692460
[100]	validation_0-logloss:0.692455
[101]	validation_0-logloss:0.692452
[102]	validation_0-logloss:0.692448
[103]	validation_0-logloss:0.692444
[104]	validation_0-logloss:0.692437
[105]	validation_0-logloss:0.692434
[106]	validation_0-logloss:0.692425
[107]	validation_0-logloss:0.692418
[108]	validation_0-logloss:0.692414
[109]	validation_0-logloss:0.692411
[110]	validation_0-logloss:0.692403
[111]	validation_0-logloss:0.692397
[112]	validation_0-logloss:0.692393
[113]	validation_0-logloss:0.692387
[114]	validation_0-logloss:0.692383
[115]	validation_0-logloss:0.692379
[116]	validation_0-logloss:0.692374
[117]	validation_0-logloss:0.692369
[118]	validation_0-logloss:0.692365
[119]	validation_0-logloss:0.692361
[120]	validation_0-logloss:0.692356
[121]	validation_0-logloss:0.692353
[122]	validation_0-logloss:0.692348
[123]	validation_0-logloss:0.692340
[124]	validation_0-logloss:0.692333
[125]	validation_0-logloss:0.692329
[126]	validation_0-logloss:0.692325
[127]	validation_0-logloss:0.692322
[128]	validation_0-logloss:0.692321
[129]	validation_0-logloss:0.692318
[130]	validation_0-logloss:0.692313
[131]	validation_0-logloss:0.692310
[132]	validation_0-logloss:0.692304
[133]	validation_0-logloss:0.692299
[134]	validation_0-logloss:0.692296
[135]	validation_0-logloss:0.692289
[136]	validation_0-logloss:0.692286
[137]	validation_0-logloss:0.692282
[138]	validation_0-logloss:0.692279
[139]	validation_0-logloss:0.692274
[140]	validation_0-logloss:0.692268
[141]	validation_0-logloss:0.692265
[142]	validation_0-logloss:0.692259
[143]	validation_0-logloss:0.692255
[144]	validation_0-logloss:0.692248
[145]	validation_0-logloss:0.692247
[146]	validation_0-logloss:0.692244
[147]	validation_0-logloss:0.692240
[148]	validation_0-logloss:0.692237
[149]	validation_0-logloss:0.692235
[150]	validation_0-logloss:0.692230
[151]	validation_0-logloss:0.692227
[152]	validation_0-logloss:0.692224
[153]	validation_0-logloss:0.692222
[154]	validation_0-logloss:0.692219
[155]	validation_0-logloss:0.692218
[156]	validation_0-logloss:0.692213
[157]	validation_0-logloss:0.692210
[158]	validation_0-logloss:0.692205
[159]	validation_0-logloss:0.692200
[160]	validation_0-logloss:0.692198
[161]	validation_0-logloss:0.692196
[162]	validation_0-logloss:0.692191
[163]	validation_0-logloss:0.692190
[164]	validation_0-logloss:0.692187
[165]	validation_0-logloss:0.692183
[166]	validation_0-logloss:0.692180
[167]	validation_0-logloss:0.692175
[168]	validation_0-logloss:0.692172
[169]	validation_0-logloss:0.692171
[170]	validation_0-logloss:0.692170
[171]	validation_0-logloss:0.692170
[172]	validation_0-logloss:0.692166
[173]	validation_0-logloss:0.692163
[174]	validation_0-logloss:0.692161
[175]	validation_0-logloss:0.692155
[176]	validation_0-logloss:0.692152
[177]	validation_0-logloss:0.692147
[178]	validation_0-logloss:0.692144
[179]	validation_0-logloss:0.692140
[180]	validation_0-logloss:0.692136
[181]	validation_0-logloss:0.692133
[182]	validation_0-logloss:0.692132
[183]	validation_0-logloss:0.692131
[184]	validation_0-logloss:0.692132
[185]	validation_0-logloss:0.692128
[186]	validation_0-logloss:0.692125
[187]	validation_0-logloss:0.692118
[188]	validation_0-logloss:0.692115
[189]	validation_0-logloss:0.692112
[190]	validation_0-logloss:0.692108
[191]	validation_0-logloss:0.692105
[192]	validation_0-logloss:0.692104
[193]	validation_0-logloss:0.692097
[194]	validation_0-logloss:0.692095
[195]	validation_0-logloss:0.692093
[196]	validation_0-logloss:0.692091
[197]	validation_0-logloss:0.692087
[198]	validation_0-logloss:0.692085
[199]	validation_0-logloss:0.692082
[200]	validation_0-logloss:0.692079
[201]	validation_0-logloss:0.692075
[202]	validation_0-logloss:0.692070
[203]	validation_0-logloss:0.692068
[204]	validation_0-logloss:0.692063
[205]	validation_0-logloss:0.692058
[206]	validation_0-logloss:0.692055
[207]	validation_0-logloss:0.692050
[208]	validation_0-logloss:0.692049
[209]	validation_0-logloss:0.692043
[210]	validation_0-logloss:0.692040
[211]	validation_0-logloss:0.692035
[212]	validation_0-logloss:0.692033
[213]	validation_0-logloss:0.692029
[214]	validation_0-logloss:0.692027
[215]	validation_0-logloss:0.692023
[216]	validation_0-logloss:0.692020
[217]	validation_0-logloss:0.692015
[218]	validation_0-logloss:0.692015
[219]	validation_0-logloss:0.692014
[220]	validation_0-logloss:0.692010
[221]	validation_0-logloss:0.692008
[222]	validation_0-logloss:0.692005
[223]	validation_0-logloss:0.692003
[224]	validation_0-logloss:0.692000
[225]	validation_0-logloss:0.691999
[226]	validation_0-logloss:0.691994
[227]	validation_0-logloss:0.691992
[228]	validation_0-logloss:0.691987
[229]	validation_0-logloss:0.691987
[230]	validation_0-logloss:0.691985
[231]	validation_0-logloss:0.691983
[232]	validation_0-logloss:0.691980
[233]	validation_0-logloss:0.691979
[234]	validation_0-logloss:0.691978
[235]	validation_0-logloss:0.691974
[236]	validation_0-logloss:0.691973
[237]	validation_0-logloss:0.691969
[238]	validation_0-logloss:0.691967
[239]	validation_0-logloss:0.691964
[240]	validation_0-logloss:0.691960
[241]	validation_0-logloss:0.691961
[242]	validation_0-logloss:0.691958
[243]	validation_0-logloss:0.691956
[244]	validation_0-logloss:0.691956
[245]	validation_0-logloss:0.691953
[246]	validation_0-logloss:0.691953
[247]	validation_0-logloss:0.691952
[248]	validation_0-logloss:0.691950
[249]	validation_0-logloss:0.691947
[250]	validation_0-logloss:0.691947
[251]	validation_0-logloss:0.691944
[252]	validation_0-logloss:0.691942
[253]	validation_0-logloss:0.691940
[254]	validation_0-logloss:0.691939
[255]	validation_0-logloss:0.691936
[256]	validation_0-logloss:0.691936
[257]	validation_0-logloss:0.691937
[258]	validation_0-logloss:0.691934
[259]	validation_0-logloss:0.691929
[260]	validation_0-logloss:0.691929
[261]	validation_0-logloss:0.691927
[262]	validation_0-logloss:0.691924
[263]	validation_0-logloss:0.691922
[264]	validation_0-logloss:0.691919
[265]	validation_0-logloss:0.691917
[266]	validation_0-logloss:0.691914
[267]	validation_0-logloss:0.691914
[268]	validation_0-logloss:0.691911
[269]	validation_0-logloss:0.691908
[270]	validation_0-logloss:0.691907
[271]	validation_0-logloss:0.691906
[272]	validation_0-logloss:0.691903
[273]	validation_0-logloss:0.691902
[274]	validation_0-logloss:0.691898
[275]	validation_0-logloss:0.691895
[276]	validation_0-logloss:0.691895
[277]	validation_0-logloss:0.691893
[278]	validation_0-logloss:0.691889
[279]	validation_0-logloss:0.691887
[280]	validation_0-logloss:0.691884
[281]	validation_0-logloss:0.691883
[282]	validation_0-logloss:0.691879
[283]	validation_0-logloss:0.691876
[284]	validation_0-logloss:0.691875
[285]	validation_0-logloss:0.691872
[286]	validation_0-logloss:0.691872
[287]	validation_0-logloss:0.691872
[288]	validation_0-logloss:0.691868
[289]	validation_0-logloss:0.691868
[290]	validation_0-logloss:0.691865
[291]	validation_0-logloss:0.691863
[292]	validation_0-logloss:0.691862
[293]	validation_0-logloss:0.691859
[294]	validation_0-logloss:0.691857
[295]	validation_0-logloss:0.691853
[296]	validation_0-logloss:0.691850
[297]	validation_0-logloss:0.691845
[298]	validation_0-logloss:0.691843
[299]	validation_0-logloss:0.691838
[300]	validation_0-logloss:0.691837
[301]	validation_0-logloss:0.691832
[302]	validation_0-logloss:0.691832
[303]	validation_0-logloss:0.691832
[304]	validation_0-logloss:0.691829
[305]	validation_0-logloss:0.691827
[306]	validation_0-logloss:0.691828
[307]	validation_0-logloss:0.691824
[308]	validation_0-logloss:0.691822
[309]	validation_0-logloss:0.691821
[310]	validation_0-logloss:0.691817
[311]	validation_0-logloss:0.691815
[312]	validation_0-logloss:0.691813
[313]	validation_0-logloss:0.691810
[314]	validation_0-logloss:0.691807
[315]	validation_0-logloss:0.691808
[316]	validation_0-logloss:0.691808
[317]	validation_0-logloss:0.691808
[318]	validation_0-logloss:0.691809
[319]	validation_0-logloss:0.691806
[320]	validation_0-logloss:0.691805
[321]	validation_0-logloss:0.691805
[322]	validation_0-logloss:0.691801
[323]	validation_0-logloss:0.691799
[324]	validation_0-logloss:0.691802
[325]	validation_0-logloss:0.691800
[326]	validation_0-logloss:0.691799
[327]	validation_0-logloss:0.691797
[328]	validation_0-logloss:0.691795
[329]	validation_0-logloss:0.691792
[330]	validation_0-logloss:0.691791
[331]	validation_0-logloss:0.691789
[332]	validation_0-logloss:0.691789
[333]	validation_0-logloss:0.691788
[334]	validation_0-logloss:0.691786
[335]	validation_0-logloss:0.691783
[336]	validation_0-logloss:0.691784
[337]	validation_0-logloss:0.691782
[338]	validation_0-logloss:0.691779
[339]	validation_0-logloss:0.691775
[340]	validation_0-logloss:0.691774
[341]	validation_0-logloss:0.691773
[342]	validation_0-logloss:0.691772
[343]	validation_0-logloss:0.691770
[344]	validation_0-logloss:0.691769
[345]	validation_0-logloss:0.691769
[346]	validation_0-logloss:0.691768
[347]	validation_0-logloss:0.691767
[348]	validation_0-logloss:0.691763
[349]	validation_0-logloss:0.691761
[350]	validation_0-logloss:0.691759
[351]	validation_0-logloss:0.691756
[352]	validation_0-logloss:0.691755
[353]	validation_0-logloss:0.691756
[354]	validation_0-logloss:0.691753
[355]	validation_0-logloss:0.691751
[356]	validation_0-logloss:0.691749
[357]	validation_0-logloss:0.691749
[358]	validation_0-logloss:0.691746
[359]	validation_0-logloss:0.691743
[360]	validation_0-logloss:0.691744
[361]	validation_0-logloss:0.691742
[362]	validation_0-logloss:0.691740
[363]	validation_0-logloss:0.691738
[364]	validation_0-logloss:0.691738
[365]	validation_0-logloss:0.691734
[366]	validation_0-logloss:0.691733
[367]	validation_0-logloss:0.691734
[368]	validation_0-logloss:0.691734
[369]	validation_0-logloss:0.691731
[370]	validation_0-logloss:0.691727
[371]	validation_0-logloss:0.691725
[372]	validation_0-logloss:0.691723
[373]	validation_0-logloss:0.691720
[374]	validation_0-logloss:0.691719
[375]	validation_0-logloss:0.691720
[376]	validation_0-logloss:0.691719
[377]	validation_0-logloss:0.691719
[378]	validation_0-logloss:0.691718
[379]	validation_0-logloss:0.691716
[380]	validation_0-logloss:0.691717
[381]	validation_0-logloss:0.691714
[382]	validation_0-logloss:0.691713
[383]	validation_0-logloss:0.691712
[384]	validation_0-logloss:0.691711
[385]	validation_0-logloss:0.691709
[386]	validation_0-logloss:0.691705
[387]	validation_0-logloss:0.691705
[388]	validation_0-logloss:0.691704
[389]	validation_0-logloss:0.691702
[390]	validation_0-logloss:0.691702
[391]	validation_0-logloss:0.691701
[392]	validation_0-logloss:0.691698
[393]	validation_0-logloss:0.691698
[394]	validation_0-logloss:0.691694
[395]	validation_0-logloss:0.691692
[396]	validation_0-logloss:0.691689
[397]	validation_0-logloss:0.691689
[398]	validation_0-logloss:0.691687
[399]	validation_0-logloss:0.691685
[400]	validation_0-logloss:0.691681
[401]	validation_0-logloss:0.691681
[402]	validation_0-logloss:0.691679
[403]	validation_0-logloss:0.691678
[404]	validation_0-logloss:0.691674
[405]	validation_0-logloss:0.691675
[406]	validation_0-logloss:0.691674
[407]	validation_0-logloss:0.691674
[408]	validation_0-logloss:0.691670
[409]	validation_0-logloss:0.691669
[410]	validation_0-logloss:0.691669
[411]	validation_0-logloss:0.691668
[412]	validation_0-logloss:0.691666
[413]	validation_0-logloss:0.691664
[414]	validation_0-logloss:0.691662
[415]	validation_0-logloss:0.691661
[416]	validation_0-logloss:0.691660
[417]	validation_0-logloss:0.691661
[418]	validation_0-logloss:0.691659
[419]	validation_0-logloss:0.691658
[420]	validation_0-logloss:0.691653
[421]	validation_0-logloss:0.691655
[422]	validation_0-logloss:0.691654
[423]	validation_0-logloss:0.691652
[424]	validation_0-logloss:0.691653
[425]	validation_0-logloss:0.691652
[426]	validation_0-logloss:0.691650
[427]	validation_0-logloss:0.691649
[428]	validation_0-logloss:0.691650
[429]	validation_0-logloss:0.691646
[430]	validation_0-logloss:0.691647
[431]	validation_0-logloss:0.691648
[432]	validation_0-logloss:0.691647
[433]	validation_0-logloss:0.691645
[434]	validation_0-logloss:0.691646
[435]	validation_0-logloss:0.691647
[436]	validation_0-logloss:0.691645
[437]	validation_0-logloss:0.691644
[438]	validation_0-logloss:0.691640
[439]	validation_0-logloss:0.691638
[440]	validation_0-logloss:0.691638
[441]	validation_0-logloss:0.691636
[442]	validation_0-logloss:0.691633
[443]	validation_0-logloss:0.691632
[444]	validation_0-logloss:0.691632
[445]	validation_0-logloss:0.691631
[446]	validation_0-logloss:0.691627
[447]	validation_0-logloss:0.691623
[448]	validation_0-logloss:0.691621
[449]	validation_0-logloss:0.691620
[450]	validation_0-logloss:0.691620
[451]	validation_0-logloss:0.691618
[452]	validation_0-logloss:0.691617
[453]	validation_0-logloss:0.691615
[454]	validation_0-logloss:0.691614
[455]	validation_0-logloss:0.691611
[456]	validation_0-logloss:0.691611
[457]	validation_0-logloss:0.691609
[458]	validation_0-logloss:0.691607
[459]	validation_0-logloss:0.691606
[460]	validation_0-logloss:0.691603
[461]	validation_0-logloss:0.691601
[462]	validation_0-logloss:0.691601
[463]	validation_0-logloss:0.691600
[464]	validation_0-logloss:0.691596
[465]	validation_0-logloss:0.691598
[466]	validation_0-logloss:0.691596
[467]	validation_0-logloss:0.691597
[468]	validation_0-logloss:0.691594
[469]	validation_0-logloss:0.691593
[470]	validation_0-logloss:0.691593
[471]	validation_0-logloss:0.691592
[472]	validation_0-logloss:0.691590
[473]	validation_0-logloss:0.691590
[474]	validation_0-logloss:0.691591
[475]	validation_0-logloss:0.691587
[476]	validation_0-logloss:0.691588
[477]	validation_0-logloss:0.691589
[478]	validation_0-logloss:0.691589
[479]	validation_0-logloss:0.691587
[480]	validation_0-logloss:0.691589
[481]	validation_0-logloss:0.691586
[482]	validation_0-logloss:0.691587
[483]	validation_0-logloss:0.691583
[484]	validation_0-logloss:0.691580
[485]	validation_0-logloss:0.691579
[486]	validation_0-logloss:0.691577
[487]	validation_0-logloss:0.691578
[488]	validation_0-logloss:0.691576
[489]	validation_0-logloss:0.691575
[490]	validation_0-logloss:0.691575
[491]	validation_0-logloss:0.691571
[492]	validation_0-logloss:0.691571
[493]	validation_0-logloss:0.691573
[494]	validation_0-logloss:0.691574
[495]	validation_0-logloss:0.691572
[496]	validation_0-logloss:0.691573
[497]	validation_0-logloss:0.691570
[498]	validation_0-logloss:0.691571
[499]	validation_0-logloss:0.691567
[500]	validation_0-logloss:0.691564
[501]	validation_0-logloss:0.691564
[502]	validation_0-logloss:0.691562
[503]	validation_0-logloss:0.691562
[504]	validation_0-logloss:0.691560
[505]	validation_0-logloss:0.691560
[506]	validation_0-logloss:0.691561
[507]	validation_0-logloss:0.691562
[508]	validation_0-logloss:0.691561
[509]	validation_0-logloss:0.691561
[510]	validation_0-logloss:0.691557
[511]	validation_0-logloss:0.691558
[512]	validation_0-logloss:0.691556
[513]	validation_0-logloss:0.691554
[514]	validation_0-logloss:0.691550
[515]	validation_0-logloss:0.691550
[516]	validation_0-logloss:0.691549
[517]	validation_0-logloss:0.691548
[518]	validation_0-logloss:0.691547
[519]	validation_0-logloss:0.691544
[520]	validation_0-logloss:0.691542
[521]	validation_0-logloss:0.691539
[522]	validation_0-logloss:0.691539
[523]	validation_0-logloss:0.691536
[524]	validation_0-logloss:0.691536
[525]	validation_0-logloss:0.691534
[526]	validation_0-logloss:0.691534
[527]	validation_0-logloss:0.691534
[528]	validation_0-logloss:0.691534
[529]	validation_0-logloss:0.691533
[530]	validation_0-logloss:0.691532
[531]	validation_0-logloss:0.691531
[532]	validation_0-logloss:0.691531
[533]	validation_0-logloss:0.691530
[534]	validation_0-logloss:0.691529
[535]	validation_0-logloss:0.691531
[536]	validation_0-logloss:0.691528
[537]	validation_0-logloss:0.691526
[538]	validation_0-logloss:0.691525
[539]	validation_0-logloss:0.691525
[540]	validation_0-logloss:0.691524
[541]	validation_0-logloss:0.691524
[542]	validation_0-logloss:0.691521
[543]	validation_0-logloss:0.691521
[544]	validation_0-logloss:0.691520
[545]	validation_0-logloss:0.691520
[546]	validation_0-logloss:0.691518
[547]	validation_0-logloss:0.691519
[548]	validation_0-logloss:0.691518
[549]	validation_0-logloss:0.691518
[550]	validation_0-logloss:0.691516
[551]	validation_0-logloss:0.691517
[552]	validation_0-logloss:0.691517
[553]	validation_0-logloss:0.691515
[554]	validation_0-logloss:0.691515
[555]	validation_0-logloss:0.691515
[556]	validation_0-logloss:0.691513
[557]	validation_0-logloss:0.691513
[558]	validation_0-logloss:0.691514
[559]	validation_0-logloss:0.691511
[560]	validation_0-logloss:0.691512
[561]	validation_0-logloss:0.691512
[562]	validation_0-logloss:0.691512
[563]	validation_0-logloss:0.691511
[564]	validation_0-logloss:0.691510
[565]	validation_0-logloss:0.691512
[566]	validation_0-logloss:0.691513
[567]	validation_0-logloss:0.691512
[568]	validation_0-logloss:0.691511
[569]	validation_0-logloss:0.691509
[570]	validation_0-logloss:0.691508
[571]	validation_0-logloss:0.691508
[572]	validation_0-logloss:0.691505
[573]	validation_0-logloss:0.691501
[574]	validation_0-logloss:0.691503
[575]	validation_0-logloss:0.691501
[576]	validation_0-logloss:0.691501
[577]	validation_0-logloss:0.691502
[578]	validation_0-logloss:0.691500
[579]	validation_0-logloss:0.691496
[580]	validation_0-logloss:0.691495
[581]	validation_0-logloss:0.691495
[582]	validation_0-logloss:0.691494
[583]	validation_0-logloss:0.691492
[584]	validation_0-logloss:0.691494
[585]	validation_0-logloss:0.691494
[586]	validation_0-logloss:0.691492
[587]	validation_0-logloss:0.691495
[588]	validation_0-logloss:0.691495
[589]	validation_0-logloss:0.691493
[590]	validation_0-logloss:0.691493
[591]	validation_0-logloss:0.691495
[592]	validation_0-logloss:0.691495
[593]	validation_0-logloss:0.691494
[594]	validation_0-logloss:0.691492
[595]	validation_0-logloss:0.691491
[596]	validation_0-logloss:0.691489
[597]	validation_0-logloss:0.691489
[598]	validation_0-logloss:0.691487
[599]	validation_0-logloss:0.691486
[600]	validation_0-logloss:0.691485
[601]	validation_0-logloss:0.691483
[602]	validation_0-logloss:0.691482
[603]	validation_0-logloss:0.691478
[604]	validation_0-logloss:0.691478
[605]	validation_0-logloss:0.691477
[606]	validation_0-logloss:0.691478
[607]	validation_0-logloss:0.691478
[608]	validation_0-logloss:0.691475
[609]	validation_0-logloss:0.691473
[610]	validation_0-logloss:0.691472
[611]	validation_0-logloss:0.691470
[612]	validation_0-logloss:0.691471
[613]	validation_0-logloss:0.691471
[614]	validation_0-logloss:0.691470
[615]	validation_0-logloss:0.691470
[616]	validation_0-logloss:0.691469
[617]	validation_0-logloss:0.691471
[618]	validation_0-logloss:0.691473
[619]	validation_0-logloss:0.691472
[620]	validation_0-logloss:0.691472
[621]	validation_0-logloss:0.691473
[622]	validation_0-logloss:0.691472
[623]	validation_0-logloss:0.691471
[624]	validation_0-logloss:0.691468
[625]	validation_0-logloss:0.691467
[626]	validation_0-logloss:0.691467
[627]	validation_0-logloss:0.691466
[628]	validation_0-logloss:0.691463
[629]	validation_0-logloss:0.691463
[630]	validation_0-logloss:0.691463
[631]	validation_0-logloss:0.691461
[632]	validation_0-logloss:0.691459
[633]	validation_0-logloss:0.691460
[634]	validation_0-logloss:0.691458
[635]	validation_0-logloss:0.691459
[636]	validation_0-logloss:0.691459
[637]	validation_0-logloss:0.691455
[638]	validation_0-logloss:0.691456
[639]	validation_0-logloss:0.691457
[640]	validation_0-logloss:0.691454
[641]	validation_0-logloss:0.691453
[642]	validation_0-logloss:0.691453
[643]	validation_0-logloss:0.691452
[644]	validation_0-logloss:0.691451
[645]	validation_0-logloss:0.691452
[646]	validation_0-logloss:0.691451
[647]	validation_0-logloss:0.691452
[648]	validation_0-logloss:0.691453
[649]	validation_0-logloss:0.691454
[650]	validation_0-logloss:0.691455
[651]	validation_0-logloss:0.691453
[652]	validation_0-logloss:0.691453
[653]	validation_0-logloss:0.691452
[654]	validation_0-logloss:0.691453
[655]	validation_0-logloss:0.691452
[656]	validation_0-logloss:0.691452
[657]	validation_0-logloss:0.691450
[658]	validation_0-logloss:0.691450
[659]	validation_0-logloss:0.691449
[660]	validation_0-logloss:0.691451
[661]	validation_0-logloss:0.691450
[662]	validation_0-logloss:0.691446
[663]	validation_0-logloss:0.691446
[664]	validation_0-logloss:0.691446
[665]	validation_0-logloss:0.691446
[666]	validation_0-logloss:0.691445
[667]	validation_0-logloss:0.691445
[668]	validation_0-logloss:0.691443
[669]	validation_0-logloss:0.691444
[670]	validation_0-logloss:0.691443
[671]	validation_0-logloss:0.691442
[672]	validation_0-logloss:0.691441
[673]	validation_0-logloss:0.691442
[674]	validation_0-logloss:0.691439
[675]	validation_0-logloss:0.691440
[676]	validation_0-logloss:0.691438
[677]	validation_0-logloss:0.691437
[678]	validation_0-logloss:0.691435
[679]	validation_0-logloss:0.691436
[680]	validation_0-logloss:0.691435
[681]	validation_0-logloss:0.691433
[682]	validation_0-logloss:0.691434
[683]	validation_0-logloss:0.691433
[684]	validation_0-logloss:0.691432
[685]	validation_0-logloss:0.691433
[686]	validation_0-logloss:0.691430
[687]	validation_0-logloss:0.691428
[688]	validation_0-logloss:0.691428
[689]	validation_0-logloss:0.691426
[690]	validation_0-logloss:0.691427
[691]	validation_0-logloss:0.691428
[692]	validation_0-logloss:0.691427
[693]	validation_0-logloss:0.691427
[694]	validation_0-logloss:0.691426
[695]	validation_0-logloss:0.691422
[696]	validation_0-logloss:0.691422
[697]	validation_0-logloss:0.691420
[698]	validation_0-logloss:0.691420
[699]	validation_0-logloss:0.691419
[700]	validation_0-logloss:0.691418
[701]	validation_0-logloss:0.691418
[702]	validation_0-logloss:0.691416
[703]	validation_0-logloss:0.691416
[704]	validation_0-logloss:0.691415
[705]	validation_0-logloss:0.691416
[706]	validation_0-logloss:0.691413
[707]	validation_0-logloss:0.691414
[708]	validation_0-logloss:0.691412
[709]	validation_0-logloss:0.691411
[710]	validation_0-logloss:0.691411
[711]	validation_0-logloss:0.691411
[712]	validation_0-logloss:0.691410
[713]	validation_0-logloss:0.691410
[714]	validation_0-logloss:0.691412
[715]	validation_0-logloss:0.691413
[716]	validation_0-logloss:0.691414
[717]	validation_0-logloss:0.691412
[718]	validation_0-logloss:0.691413
[719]	validation_0-logloss:0.691413
[720]	validation_0-logloss:0.691411
[721]	validation_0-logloss:0.691411
[722]	validation_0-logloss:0.691411
[723]	validation_0-logloss:0.691411
[724]	validation_0-logloss:0.691410
[725]	validation_0-logloss:0.691412
[726]	validation_0-logloss:0.691410
[727]	validation_0-logloss:0.691410
[728]	validation_0-logloss:0.691407
[729]	validation_0-logloss:0.691408
[730]	validation_0-logloss:0.691407
[731]	validation_0-logloss:0.691406
[732]	validation_0-logloss:0.691405
[733]	validation_0-logloss:0.691404
[734]	validation_0-logloss:0.691402
[735]	validation_0-logloss:0.691400
[736]	validation_0-logloss:0.691400
[737]	validation_0-logloss:0.691397
[738]	validation_0-logloss:0.691397
[739]	validation_0-logloss:0.691396
[740]	validation_0-logloss:0.691398
[741]	validation_0-logloss:0.691397
[742]	validation_0-logloss:0.691396
[743]	validation_0-logloss:0.691397
[744]	validation_0-logloss:0.691396
[745]	validation_0-logloss:0.691398
[746]	validation_0-logloss:0.691397
[747]	validation_0-logloss:0.691396
[748]	validation_0-logloss:0.691393
[749]	validation_0-logloss:0.691395
[750]	validation_0-logloss:0.691392
[751]	validation_0-logloss:0.691391
[752]	validation_0-logloss:0.691390
[753]	validation_0-logloss:0.691389
[754]	validation_0-logloss:0.691391
[755]	validation_0-logloss:0.691391
[756]	validation_0-logloss:0.691388
[757]	validation_0-logloss:0.691387
[758]	validation_0-logloss:0.691386
[759]	validation_0-logloss:0.691387
[760]	validation_0-logloss:0.691385
[761]	validation_0-logloss:0.691385
[762]	validation_0-logloss:0.691384
[763]	validation_0-logloss:0.691381
[764]	validation_0-logloss:0.691382
[765]	validation_0-logloss:0.691383
[766]	validation_0-logloss:0.691383
[767]	validation_0-logloss:0.691383
[768]	validation_0-logloss:0.691383
[769]	validation_0-logloss:0.691382
[770]	validation_0-logloss:0.691381
[771]	validation_0-logloss:0.691382
[772]	validation_0-logloss:0.691381
[773]	validation_0-logloss:0.691380
[774]	validation_0-logloss:0.691379
[775]	validation_0-logloss:0.691378
[776]	validation_0-logloss:0.691377
[777]	validation_0-logloss:0.691378
[778]	validation_0-logloss:0.691379
[779]	validation_0-logloss:0.691379
[780]	validation_0-logloss:0.691378
[781]	validation_0-logloss:0.691377
[782]	validation_0-logloss:0.691377
[783]	validation_0-logloss:0.691377
[784]	validation_0-logloss:0.691375
[785]	validation_0-logloss:0.691373
[786]	validation_0-logloss:0.691371
[787]	validation_0-logloss:0.691370
[788]	validation_0-logloss:0.691368
[789]	validation_0-logloss:0.691368
[790]	validation_0-logloss:0.691365
[791]	validation_0-logloss:0.691363
[792]	validation_0-logloss:0.691361
[793]	validation_0-logloss:0.691360
[794]	validation_0-logloss:0.691359
[795]	validation_0-logloss:0.691357
[796]	validation_0-logloss:0.691357
[797]	validation_0-logloss:0.691357
[798]	validation_0-logloss:0.691355
[799]	validation_0-logloss:0.691355
[800]	validation_0-logloss:0.691357
[801]	validation_0-logloss:0.691357
[802]	validation_0-logloss:0.691357
[803]	validation_0-logloss:0.691357
[804]	validation_0-logloss:0.691357
[805]	validation_0-logloss:0.691359
[806]	validation_0-logloss:0.691358
[807]	validation_0-logloss:0.691359
[808]	validation_0-logloss:0.691357
[809]	validation_0-logloss:0.691358
[810]	validation_0-logloss:0.691356
[811]	validation_0-logloss:0.691357
[812]	validation_0-logloss:0.691357
[813]	validation_0-logloss:0.691359
[814]	validation_0-logloss:0.691356
[815]	validation_0-logloss:0.691356
[816]	validation_0-logloss:0.691358
[817]	validation_0-logloss:0.691356
[818]	validation_0-logloss:0.691357
[819]	validation_0-logloss:0.691357
[820]	validation_0-logloss:0.691357
[821]	validation_0-logloss:0.691356
[822]	validation_0-logloss:0.691354
[823]	validation_0-logloss:0.691355
[824]	validation_0-logloss:0.691354
[825]	validation_0-logloss:0.691354
[826]	validation_0-logloss:0.691352
[827]	validation_0-logloss:0.691350
[828]	validation_0-logloss:0.691350
[829]	validation_0-logloss:0.691348
[830]	validation_0-logloss:0.691345
[831]	validation_0-logloss:0.691344
[832]	validation_0-logloss:0.691344
[833]	validation_0-logloss:0.691345
[834]	validation_0-logloss:0.691348
[835]	validation_0-logloss:0.691343
[836]	validation_0-logloss:0.691343
[837]	validation_0-logloss:0.691343
[838]	validation_0-logloss:0.691342
[839]	validation_0-logloss:0.691341
[840]	validation_0-logloss:0.691341
[841]	validation_0-logloss:0.691339
[842]	validation_0-logloss:0.691340
[843]	validation_0-logloss:0.691340
[844]	validation_0-logloss:0.691337
[845]	validation_0-logloss:0.691337
[846]	validation_0-logloss:0.691337
[847]	validation_0-logloss:0.691335
[848]	validation_0-logloss:0.691338
[849]	validation_0-logloss:0.691338
[850]	validation_0-logloss:0.691338
[851]	validation_0-logloss:0.691338
[852]	validation_0-logloss:0.691336
[853]	validation_0-logloss:0.691336
[854]	validation_0-logloss:0.691337
[855]	validation_0-logloss:0.691335
[856]	validation_0-logloss:0.691335
[857]	validation_0-logloss:0.691334
[858]	validation_0-logloss:0.691332
[859]	validation_0-logloss:0.691331
[860]	validation_0-logloss:0.691330
[861]	validation_0-logloss:0.691329
[862]	validation_0-logloss:0.691328
[863]	validation_0-logloss:0.691325
[864]	validation_0-logloss:0.691325
[865]	validation_0-logloss:0.691325
[866]	validation_0-logloss:0.691324
[867]	validation_0-logloss:0.691322
[868]	validation_0-logloss:0.691323
[869]	validation_0-logloss:0.691324
[870]	validation_0-logloss:0.691325
[871]	validation_0-logloss:0.691326
[872]	validation_0-logloss:0.691326
[873]	validation_0-logloss:0.691323
[874]	validation_0-logloss:0.691323
[875]	validation_0-logloss:0.691323
[876]	validation_0-logloss:0.691324
[877]	validation_0-logloss:0.691324
[878]	validation_0-logloss:0.691325
[879]	validation_0-logloss:0.691325
[880]	validation_0-logloss:0.691324
[881]	validation_0-logloss:0.691326
[882]	validation_0-logloss:0.691323
[883]	validation_0-logloss:0.691319
[884]	validation_0-logloss:0.691319
[885]	validation_0-logloss:0.691320
[886]	validation_0-logloss:0.691320
[887]	validation_0-logloss:0.691317
[888]	validation_0-logloss:0.691317
[889]	validation_0-logloss:0.691315
[890]	validation_0-logloss:0.691314
[891]	validation_0-logloss:0.691315
[892]	validation_0-logloss:0.691315
[893]	validation_0-logloss:0.691315
[894]	validation_0-logloss:0.691313
[895]	validation_0-logloss:0.691312
[896]	validation_0-logloss:0.691311
[897]	validation_0-logloss:0.691313
[898]	validation_0-logloss:0.691312
[899]	validation_0-logloss:0.691312
[900]	validation_0-logloss:0.691314
[901]	validation_0-logloss:0.691315
[902]	validation_0-logloss:0.691316
[903]	validation_0-logloss:0.691315
[904]	validation_0-logloss:0.691316
[905]	validation_0-logloss:0.691315
[906]	validation_0-logloss:0.691312
[907]	validation_0-logloss:0.691312
[908]	validation_0-logloss:0.691313
[909]	validation_0-logloss:0.691312
[910]	validation_0-logloss:0.691312
[911]	validation_0-logloss:0.691311
[912]	validation_0-logloss:0.691310
[913]	validation_0-logloss:0.691309
[914]	validation_0-logloss:0.691310
[915]	validation_0-logloss:0.691309
[916]	validation_0-logloss:0.691309
[917]	validation_0-logloss:0.691307
[918]	validation_0-logloss:0.691308
[919]	validation_0-logloss:0.691308
[920]	validation_0-logloss:0.691309
[921]	validation_0-logloss:0.691308
[922]	validation_0-logloss:0.691308
[923]	validation_0-logloss:0.691306
[924]	validation_0-logloss:0.691304
[925]	validation_0-logloss:0.691302
[926]	validation_0-logloss:0.691301
[927]	validation_0-logloss:0.691301
[928]	validation_0-logloss:0.691300
[929]	validation_0-logloss:0.691301
[930]	validation_0-logloss:0.691299
[931]	validation_0-logloss:0.691297
[932]	validation_0-logloss:0.691298
[933]	validation_0-logloss:0.691298
[934]	validation_0-logloss:0.691296
[935]	validation_0-logloss:0.691295
[936]	validation_0-logloss:0.691295
[937]	validation_0-logloss:0.691297
[938]	validation_0-logloss:0.691296
[939]	validation_0-logloss:0.691297
[940]	validation_0-logloss:0.691298
[941]	validation_0-logloss:0.691294
[942]	validation_0-logloss:0.691294
[943]	validation_0-logloss:0.691295
[944]	validation_0-logloss:0.691294
[945]	validation_0-logloss:0.691292
[946]	validation_0-logloss:0.691292
[947]	validation_0-logloss:0.691292
[948]	validation_0-logloss:0.691292
[949]	validation_0-logloss:0.691291
[950]	validation_0-logloss:0.691293
[951]	validation_0-logloss:0.691294
[952]	validation_0-logloss:0.691293
[953]	validation_0-logloss:0.691289
[954]	validation_0-logloss:0.691285
[955]	validation_0-logloss:0.691285
[956]	validation_0-logloss:0.691283
[957]	validation_0-logloss:0.691280
[958]	validation_0-logloss:0.691280
[959]	validation_0-logloss:0.691278
[960]	validation_0-logloss:0.691278
[961]	validation_0-logloss:0.691276
[962]	validation_0-logloss:0.691277
[963]	validation_0-logloss:0.691276
[964]	validation_0-logloss:0.691276
[965]	validation_0-logloss:0.691275
[966]	validation_0-logloss:0.691274
[967]	validation_0-logloss:0.691274
[968]	validation_0-logloss:0.691274
[969]	validation_0-logloss:0.691275
[970]	validation_0-logloss:0.691272
[971]	validation_0-logloss:0.691270
[972]	validation_0-logloss:0.691269
[973]	validation_0-logloss:0.691270
[974]	validation_0-logloss:0.691272
[975]	validation_0-logloss:0.691273
[976]	validation_0-logloss:0.691271
[977]	validation_0-logloss:0.691272
[978]	validation_0-logloss:0.691272
[979]	validation_0-logloss:0.691268
[980]	validation_0-logloss:0.691269
[981]	validation_0-logloss:0.691269
[982]	validation_0-logloss:0.691265
[983]	validation_0-logloss:0.691265
[984]	validation_0-logloss:0.691263
[985]	validation_0-logloss:0.691265
[986]	validation_0-logloss:0.691265
[987]	validation_0-logloss:0.691260
[988]	validation_0-logloss:0.691260
[989]	validation_0-logloss:0.691260
[990]	validation_0-logloss:0.691257
[991]	validation_0-logloss:0.691258
[992]	validation_0-logloss:0.691259
[993]	validation_0-logloss:0.691256
[994]	validation_0-logloss:0.691255
[995]	validation_0-logloss:0.691255
[996]	validation_0-logloss:0.691254
[997]	validation_0-logloss:0.691255
[998]	validation_0-logloss:0.691255
[999]	validation_0-logloss:0.691255
[1000]	validation_0-logloss:0.691255
[1001]	validation_0-logloss:0.691253
[1002]	validation_0-logloss:0.691251
[1003]	validation_0-logloss:0.691250
[1004]	validation_0-logloss:0.691248
[1005]	validation_0-logloss:0.691249
[1006]	validation_0-logloss:0.691248
[1007]	validation_0-logloss:0.691247
[1008]	validation_0-logloss:0.691248
[1009]	validation_0-logloss:0.691249
[1010]	validation_0-logloss:0.691247
[1011]	validation_0-logloss:0.691245
[1012]	validation_0-logloss:0.691246
[1013]	validation_0-logloss:0.691246
[1014]	validation_0-logloss:0.691245
[1015]	validation_0-logloss:0.691246
[1016]	validation_0-logloss:0.691247
[1017]	validation_0-logloss:0.691246
[1018]	validation_0-logloss:0.691244
[1019]	validation_0-logloss:0.691243
[1020]	validation_0-logloss:0.691244
[1021]	validation_0-logloss:0.691243
[1022]	validation_0-logloss:0.691241
[1023]	validation_0-logloss:0.691239
[1024]	validation_0-logloss:0.691239
[1025]	validation_0-logloss:0.691237
[1026]	validation_0-logloss:0.691238
[1027]	validation_0-logloss:0.691237
[1028]	validation_0-logloss:0.691241
[1029]	validation_0-logloss:0.691241
[1030]	validation_0-logloss:0.691241
[1031]	validation_0-logloss:0.691240
[1032]	validation_0-logloss:0.691237
[1033]	validation_0-logloss:0.691238
[1034]	validation_0-logloss:0.691238
[1035]	validation_0-logloss:0.691239
[1036]	validation_0-logloss:0.691240
[1037]	validation_0-logloss:0.691242
[1038]	validation_0-logloss:0.691243
[1039]	validation_0-logloss:0.691241
[1040]	validation_0-logloss:0.691238
[1041]	validation_0-logloss:0.691239
[1042]	validation_0-logloss:0.691237
[1043]	validation_0-logloss:0.691236
[1044]	validation_0-logloss:0.691236
[1045]	validation_0-logloss:0.691234
[1046]	validation_0-logloss:0.691236
[1047]	validation_0-logloss:0.691236
[1048]	validation_0-logloss:0.691237
[1049]	validation_0-logloss:0.691236
[1050]	validation_0-logloss:0.691234
[1051]	validation_0-logloss:0.691234
[1052]	validation_0-logloss:0.691234
[1053]	validation_0-logloss:0.691236
[1054]	validation_0-logloss:0.691237
[1055]	validation_0-logloss:0.691236
[1056]	validation_0-logloss:0.691237
[1057]	validation_0-logloss:0.691238
[1058]	validation_0-logloss:0.691237
[1059]	validation_0-logloss:0.691237
[1060]	validation_0-logloss:0.691234
[1061]	validation_0-logloss:0.691233
[1062]	validation_0-logloss:0.691233
[1063]	validation_0-logloss:0.691234
[1064]	validation_0-logloss:0.691233
[1065]	validation_0-logloss:0.691233
[1066]	validation_0-logloss:0.691234
[1067]	validation_0-logloss:0.691236
[1068]	validation_0-logloss:0.691236
[1069]	validation_0-logloss:0.691234
[1070]	validation_0-logloss:0.691233
[1071]	validation_0-logloss:0.691233
[1072]	validation_0-logloss:0.691232
[1073]	validation_0-logloss:0.691231
[1074]	validation_0-logloss:0.691229
[1075]	validation_0-logloss:0.691229
[1076]	validation_0-logloss:0.691229
[1077]	validation_0-logloss:0.691230
[1078]	validation_0-logloss:0.691230
[1079]	validation_0-logloss:0.691229
[1080]	validation_0-logloss:0.691231
[1081]	validation_0-logloss:0.691231
[1082]	validation_0-logloss:0.691230
[1083]	validation_0-logloss:0.691232
[1084]	validation_0-logloss:0.691232
[1085]	validation_0-logloss:0.691232
[1086]	validation_0-logloss:0.691234
[1087]	validation_0-logloss:0.691234
[1088]	validation_0-logloss:0.691232
[1089]	validation_0-logloss:0.691232
[1090]	validation_0-logloss:0.691234
[1091]	validation_0-logloss:0.691234
[1092]	validation_0-logloss:0.691236
[1093]	validation_0-logloss:0.691237
[1094]	validation_0-logloss:0.691235
[1095]	validation_0-logloss:0.691235
[1096]	validation_0-logloss:0.691236
[1097]	validation_0-logloss:0.691235
[1098]	validation_0-logloss:0.691235
[1099]	validation_0-logloss:0.691234
[1100]	validation_0-logloss:0.691233
[1101]	validation_0-logloss:0.691235
[1102]	validation_0-logloss:0.691234
[1103]	validation_0-logloss:0.691234
[1104]	validation_0-logloss:0.691233
[1105]	validation_0-logloss:0.691234
[1106]	validation_0-logloss:0.691233
[1107]	validation_0-logloss:0.691234
[1108]	validation_0-logloss:0.691234
[1109]	validation_0-logloss:0.691235
[1110]	validation_0-logloss:0.691236
[1111]	validation_0-logloss:0.691235
[1112]	validation_0-logloss:0.691234
[1113]	validation_0-logloss:0.691234
[1114]	validation_0-logloss:0.691232
[1115]	validation_0-logloss:0.691233
[1116]	validation_0-logloss:0.691233
[1117]	validation_0-logloss:0.691237
[1118]	validation_0-logloss:0.691237
[1119]	validation_0-logloss:0.691236
[1120]	validation_0-logloss:0.691237
[1121]	validation_0-logloss:0.691238
[1122]	validation_0-logloss:0.691239
[1123]	validation_0-logloss:0.691239
[1124]	validation_0-logloss:0.691241
[1125]	validation_0-logloss:0.691244
[1126]	validation_0-logloss:0.691245
[1127]	validation_0-logloss:0.691243
[1128]	validation_0-logloss:0.691245
[1129]	validation_0-logloss:0.691247
[1130]	validation_0-logloss:0.691245
[1131]	validation_0-logloss:0.691246
[1132]	validation_0-logloss:0.691244
[1133]	validation_0-logloss:0.691247
[1134]	validation_0-logloss:0.691247
[1135]	validation_0-logloss:0.691248
[1136]	validation_0-logloss:0.691248
[1137]	validation_0-logloss:0.691248
[1138]	validation_0-logloss:0.691249
[1139]	validation_0-logloss:0.691248
[1140]	validation_0-logloss:0.691248
[1141]	validation_0-logloss:0.691247
[1142]	validation_0-logloss:0.691248
[1143]	validation_0-logloss:0.691249
[1144]	validation_0-logloss:0.691247
[1145]	validation_0-logloss:0.691249
[1146]	validation_0-logloss:0.691250
[1147]	validation_0-logloss:0.691248
[1148]	validation_0-logloss:0.691249
[1149]	validation_0-logloss:0.691249
[1150]	validation_0-logloss:0.691250
[1151]	validation_0-logloss:0.691249
[1152]	validation_0-logloss:0.691246
[1153]	validation_0-logloss:0.691243
[1154]	validation_0-logloss:0.691244
[1155]	validation_0-logloss:0.691245
[1156]	validation_0-logloss:0.691245
[1157]	validation_0-logloss:0.691245
[1158]	validation_0-logloss:0.691243
[1159]	validation_0-logloss:0.691242
[1160]	validation_0-logloss:0.691243
[1161]	validation_0-logloss:0.691242
[1162]	validation_0-logloss:0.691241
[1163]	validation_0-logloss:0.691239
[1164]	validation_0-logloss:0.691238
[1165]	validation_0-logloss:0.691239
[1166]	validation_0-logloss:0.691242
[1167]	validation_0-logloss:0.691241
[1168]	validation_0-logloss:0.691241
[1169]	validation_0-logloss:0.691243
[1170]	validation_0-logloss:0.691241
[1171]	validation_0-logloss:0.691241
[1172]	validation_0-logloss:0.691240
[1173]	validation_0-logloss:0.691238
[1174]	validation_0-logloss:0.691238
[1175]	validation_0-logloss:0.691237
[1176]	validation_0-logloss:0.691236
[1177]	validation_0-logloss:0.691235
[1178]	validation_0-logloss:0.691234
[1179]	validation_0-logloss:0.691234
[1180]	validation_0-logloss:0.691235
[1181]	validation_0-logloss:0.691234
[1182]	validation_0-logloss:0.691233
[1183]	validation_0-logloss:0.691234
[1184]	validation_0-logloss:0.691233
[1185]	validation_0-logloss:0.691231
[1186]	validation_0-logloss:0.691232
[1187]	validation_0-logloss:0.691231
[1188]	validation_0-logloss:0.691233
[1189]	validation_0-logloss:0.691233
[1190]	validation_0-logloss:0.691235
[1191]	validation_0-logloss:0.691234
[1192]	validation_0-logloss:0.691235
[1193]	validation_0-logloss:0.691233
[1194]	validation_0-logloss:0.691231
[1195]	validation_0-logloss:0.691232
[1196]	validation_0-logloss:0.691232
[1197]	validation_0-logloss:0.691232
[1198]	validation_0-logloss:0.691234
[1199]	validation_0-logloss:0.691233
[1200]	validation_0-logloss:0.691233
[1201]	validation_0-logloss:0.691233
[1202]	validation_0-logloss:0.691232
[1203]	validation_0-logloss:0.691232
[1204]	validation_0-logloss:0.691233
[1205]	validation_0-logloss:0.691233
[1206]	validation_0-logloss:0.691234
[1207]	validation_0-logloss:0.691231
[1208]	validation_0-logloss:0.691230
[1209]	validation_0-logloss:0.691230
[1210]	validation_0-logloss:0.691228
[1211]	validation_0-logloss:0.691229
[1212]	validation_0-logloss:0.691230
[1213]	validation_0-logloss:0.691230
[1214]	validation_0-logloss:0.691229
[1215]	validation_0-logloss:0.691229
[1216]	validation_0-logloss:0.691229
[1217]	validation_0-logloss:0.691229
[1218]	validation_0-logloss:0.691226
[1219]	validation_0-logloss:0.691223
[1220]	validation_0-logloss:0.691225
[1221]	validation_0-logloss:0.691224
[1222]	validation_0-logloss:0.691224
[1223]	validation_0-logloss:0.691221
[1224]	validation_0-logloss:0.691222
[1225]	validation_0-logloss:0.691222
[1226]	validation_0-logloss:0.691221
[1227]	validation_0-logloss:0.691221
[1228]	validation_0-logloss:0.691220
[1229]	validation_0-logloss:0.691220
[1230]	validation_0-logloss:0.691218
[1231]	validation_0-logloss:0.691216
[1232]	validation_0-logloss:0.691211
[1233]	validation_0-logloss:0.691213
[1234]	validation_0-logloss:0.691212
[1235]	validation_0-logloss:0.691211
[1236]	validation_0-logloss:0.691210
[1237]	validation_0-logloss:0.691210
[1238]	validation_0-logloss:0.691206
[1239]	validation_0-logloss:0.691205
[1240]	validation_0-logloss:0.691206
[1241]	validation_0-logloss:0.691205
[1242]	validation_0-logloss:0.691205
[1243]	validation_0-logloss:0.691203
[1244]	validation_0-logloss:0.691204
[1245]	validation_0-logloss:0.691203
[1246]	validation_0-logloss:0.691202
[1247]	validation_0-logloss:0.691204
[1248]	validation_0-logloss:0.691203
[1249]	validation_0-logloss:0.691204
[1250]	validation_0-logloss:0.691205
[1251]	validation_0-logloss:0.691205
[1252]	validation_0-logloss:0.691206
[1253]	validation_0-logloss:0.691207
[1254]	validation_0-logloss:0.691208
[1255]	validation_0-logloss:0.691207
[1256]	validation_0-logloss:0.691207
[1257]	validation_0-logloss:0.691205
[1258]	validation_0-logloss:0.691206
[1259]	validation_0-logloss:0.691206
[1260]	validation_0-logloss:0.691205
[1261]	validation_0-logloss:0.691205
[1262]	validation_0-logloss:0.691204
[1263]	validation_0-logloss:0.691208
[1264]	validation_0-logloss:0.691208
[1265]	validation_0-logloss:0.691209
[1266]	validation_0-logloss:0.691207
[1267]	validation_0-logloss:0.691208
[1268]	validation_0-logloss:0.691205
[1269]	validation_0-logloss:0.691204
[1270]	validation_0-logloss:0.691204
[1271]	validation_0-logloss:0.691204
[1272]	validation_0-logloss:0.691204
[1273]	validation_0-logloss:0.691204
[1274]	validation_0-logloss:0.691202
[1275]	validation_0-logloss:0.691202
[1276]	validation_0-logloss:0.691201
[1277]	validation_0-logloss:0.691201
[1278]	validation_0-logloss:0.691203
[1279]	validation_0-logloss:0.691201
[1280]	validation_0-logloss:0.691199
[1281]	validation_0-logloss:0.691198
[1282]	validation_0-logloss:0.691197
[1283]	validation_0-logloss:0.691197
[1284]	validation_0-logloss:0.691200
[1285]	validation_0-logloss:0.691200
[1286]	validation_0-logloss:0.691200
[1287]	validation_0-logloss:0.691200
[1288]	validation_0-logloss:0.691200
[1289]	validation_0-logloss:0.691202
[1290]	validation_0-logloss:0.691201
[1291]	validation_0-logloss:0.691200
[1292]	validation_0-logloss:0.691197
[1293]	validation_0-logloss:0.691198
[1294]	validation_0-logloss:0.691200
[1295]	validation_0-logloss:0.691201
[1296]	validation_0-logloss:0.691204
[1297]	validation_0-logloss:0.691202
[1298]	validation_0-logloss:0.691204
[1299]	validation_0-logloss:0.691202
[1300]	validation_0-logloss:0.691203
[1301]	validation_0-logloss:0.691203
[1302]	validation_0-logloss:0.691203
[1303]	validation_0-logloss:0.691204
[1304]	validation_0-logloss:0.691202
[1305]	validation_0-logloss:0.691202
[1306]	validation_0-logloss:0.691202
[1307]	validation_0-logloss:0.691204
[1308]	validation_0-logloss:0.691205
[1309]	validation_0-logloss:0.691206
[1310]	validation_0-logloss:0.691207
[1311]	validation_0-logloss:0.691210
[1312]	validation_0-logloss:0.691208
[1313]	validation_0-logloss:0.691210
[1314]	validation_0-logloss:0.691211
[1315]	validation_0-logloss:0.691209
[1316]	validation_0-logloss:0.691209
[1317]	validation_0-logloss:0.691208
[1318]	validation_0-logloss:0.691209
[1319]	validation_0-logloss:0.691209
[1320]	validation_0-logloss:0.691208
[1321]	validation_0-logloss:0.691206
[1322]	validation_0-logloss:0.691208
[1323]	validation_0-logloss:0.691208
[1324]	validation_0-logloss:0.691210
[1325]	validation_0-logloss:0.691213
[1326]	validation_0-logloss:0.691214
[1327]	validation_0-logloss:0.691213
[1328]	validation_0-logloss:0.691213
[1329]	validation_0-logloss:0.691214
[1330]	validation_0-logloss:0.691211
[1331]	validation_0-logloss:0.691212
[1332]	validation_0-logloss:0.691212
[1333]	validation_0-logloss:0.691210
[1334]	validation_0-logloss:0.691211
[1335]	validation_0-logloss:0.691213
[1336]	validation_0-logloss:0.691213
[1337]	validation_0-logloss:0.691215
[1338]	validation_0-logloss:0.691215
[1339]	validation_0-logloss:0.691215
[1340]	validation_0-logloss:0.691215
[1341]	validation_0-logloss:0.691216
[1342]	validation_0-logloss:0.691214
[1343]	validation_0-logloss:0.691211
[1344]	validation_0-logloss:0.691211
[1345]	validation_0-logloss:0.691209
[1346]	validation_0-logloss:0.691209
[1347]	validation_0-logloss:0.691210
[1348]	validation_0-logloss:0.691209
[1349]	validation_0-logloss:0.691210
[1350]	validation_0-logloss:0.691209
[1351]	validation_0-logloss:0.691209
[1352]	validation_0-logloss:0.691210
[1353]	validation_0-logloss:0.691209
[1354]	validation_0-logloss:0.691208
[1355]	validation_0-logloss:0.691208
[1356]	validation_0-logloss:0.691207
[1357]	validation_0-logloss:0.691209
[1358]	validation_0-logloss:0.691208
[1359]	validation_0-logloss:0.691208
[1360]	validation_0-logloss:0.691209
[1361]	validation_0-logloss:0.691209
[1362]	validation_0-logloss:0.691210
[1363]	validation_0-logloss:0.691212
[1364]	validation_0-logloss:0.691213
[1365]	validation_0-logloss:0.691212
[1366]	validation_0-logloss:0.691212
[1367]	validation_0-logloss:0.691212
[1368]	validation_0-logloss:0.691212
[1369]	validation_0-logloss:0.691211
[1370]	validation_0-logloss:0.691215
[1371]	validation_0-logloss:0.691214
[1372]	validation_0-logloss:0.691215
[1373]	validation_0-logloss:0.691214
[1374]	validation_0-logloss:0.691214
[1375]	validation_0-logloss:0.691214
[1376]	validation_0-logloss:0.691214
[1377]	validation_0-logloss:0.691214
[1378]	validation_0-logloss:0.691216
[1379]	validation_0-logloss:0.691215
[1380]	validation_0-logloss:0.691214
[1381]	validation_0-logloss:0.691214
[1382]	validation_0-logloss:0.691214
[1383]	validation_0-logloss:0.691216
[1384]	validation_0-logloss:0.691216
[1385]	validation_0-logloss:0.691214
[1386]	validation_0-logloss:0.691213
[1387]	validation_0-logloss:0.691211
[1388]	validation_0-logloss:0.691210
[1389]	validation_0-logloss:0.691210
[1390]	validation_0-logloss:0.691212
[1391]	validation_0-logloss:0.691212
[1392]	validation_0-logloss:0.691212
[1393]	validation_0-logloss:0.691213
[1394]	validation_0-logloss:0.691213
[1395]	validation_0-logloss:0.691215
[1396]	validation_0-logloss:0.691216
[1397]	validation_0-logloss:0.691213
[1398]	validation_0-logloss:0.691211
[1399]	validation_0-logloss:0.691211
[1400]	validation_0-logloss:0.691212
[1401]	validation_0-logloss:0.691213
[1402]	validation_0-logloss:0.691213
[1403]	validation_0-logloss:0.691212
[1404]	validation_0-logloss:0.691212
[1405]	validation_0-logloss:0.691210
[1406]	validation_0-logloss:0.691209
[1407]	validation_0-logloss:0.691209
[1408]	validation_0-logloss:0.691212
[1409]	validation_0-logloss:0.691212
[1410]	validation_0-logloss:0.691213
[1411]	validation_0-logloss:0.691212
[1412]	validation_0-logloss:0.691212
[1413]	validation_0-logloss:0.691211
[1414]	validation_0-logloss:0.691210
[1415]	validation_0-logloss:0.691211
[1416]	validation_0-logloss:0.691209
[1417]	validation_0-logloss:0.691210
[1418]	validation_0-logloss:0.691209
[1419]	validation_0-logloss:0.691209
[1420]	validation_0-logloss:0.691209
[1421]	validation_0-logloss:0.691208
[1422]	validation_0-logloss:0.691210
[1423]	validation_0-logloss:0.691209
[1424]	validation_0-logloss:0.691208
[1425]	validation_0-logloss:0.691208
[1426]	validation_0-logloss:0.691209
[1427]	validation_0-logloss:0.691210
[1428]	validation_0-logloss:0.691210
[1429]	validation_0-logloss:0.691212
[1430]	validation_0-logloss:0.691210
[1431]	validation_0-logloss:0.691209
[1432]	validation_0-logloss:0.691205
Stopping. Best iteration:
[1282]	validation_0-logloss:0.691197

-----------------------
  logloss train: 0.68744
  logloss valid: 0.69121
-----------------------

Model parameters...
{'reg_alpha': 0, 'colsample_bytree': 0.8, 'silent': True, 'colsample_bylevel': 1, 'scale_pos_weight': 1, 'learning_rate': 0.005, 'missing': None, 'max_delta_step': 0, 'nthread': -1, 'base_score': 0.5, 'n_estimators': 1500, 'subsample': 0.9, 'reg_lambda': 1, 'seed': 2100, 'min_child_weight': 3, 'objective': 'binary:logistic', 'max_depth': 3, 'gamma': 0.3}

In [5]:
y_pred= clf.predict_proba(test)[:,1]

submission = pd.DataFrame({"t_id":id_test, "probability":y_pred})
submission.to_csv("submission_xgboost.csv", index=False)

In [8]:
print X_fit.values.shape , y_fit.shape, X_eval.shape, y_eval.shape


(86688, 21) (86688,) (9632, 21) (9632,)

In [19]:
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import Adam
from keras.utils.np_utils import to_categorical


nn = Sequential()
nn.add(Dense(250, input_dim=21, init='uniform'))
nn.add(Dropout(0.4))
nn.add(Activation('sigmoid'))
nn.add(Dense(2, init='uniform'))
nn.add(Activation('softmax'))

opt = Adam(lr=1e-3)
nn.compile(loss='sparse_categorical_crossentropy', optimizer=opt)
#X_fit, y_fit, early_stopping_rounds=150,  eval_metric="logloss", eval_set=[(X_eval, y_eval)
hist = nn.fit(X_fit.values, y_fit.values, nb_epoch=125, verbose=0,validation_data=(X_eval.values, y_eval.values))

In [20]:
y_pred= nn.predict_proba(test.values, verbose=0)[:,1]

submission = pd.DataFrame({"t_id":id_test, "probability":y_pred})
submission.to_csv("submission_NN.csv", index=False)

In [21]:
%matplotlib inline

plt.plot(hist.history['loss'][0:])
plt.plot(hist.history['val_loss'][0:])
plt.legend(['Train loss', 'Validation loss'])


Out[21]:
<matplotlib.legend.Legend at 0x7f47c1c8d910>

In [50]:
clf1_p = rf.predict_proba(X_eval)[:,1]

#Logreg
clf7_p = lrCV.predict_proba(X_eval)[:,1]

#xgb
clf8_p = clf.predict_proba(X_eval)[:,1]

# #NN
clf3_p = nn.predict_proba(X_eval.values, verbose = 0)[:,1]

In [51]:
classifiers = [clf1_p, 
               clf8_p, 
               clf3_p,                
               clf7_p]

predictions = pd.DataFrame(classifiers[0:2]).T

for classif in classifiers:
    print(log_loss(y_eval, classif))


0.691367878221
0.691205202806
0.691689995766
0.691449256838

In [52]:
print(np.corrcoef(classifiers))


[[ 1.          0.93818692  0.88003664  0.85373216]
 [ 0.93818692  1.          0.85944264  0.84256706]
 [ 0.88003664  0.85944264  1.          0.98117145]
 [ 0.85373216  0.84256706  0.98117145  1.        ]]

In [53]:
Ps = np.array(classifiers).T
def ensemble_logloss(w):
    return log_loss(y_eval, (Ps*w).sum(1).T/np.sum(w))

In [54]:
ensemble_logloss(np.ones(len(classifiers)))


Out[54]:
0.69127890242990808

In [55]:
def ensemble_roc_auc(w):
    return roc_auc_score(y_eval, (Ps*w).sum(1).T/np.sum(w))

In [56]:
ensemble_roc_auc(np.ones(len(classifiers)))


Out[56]:
0.5348664624138677

In [57]:
from scipy.optimize import minimize

opt = minimize(ensemble_logloss, x0=np.ones(len(classifiers)))
print("Function result:", opt.fun)
print("Array:", opt.x)


('Function result:', 0.6911392619336544)
('Array:', array([-0.58555103,  3.6020983 , -1.62525096,  2.6093859 ]))

In [58]:
w = opt.x/opt.x.sum()
w


Out[58]:
array([-0.1463628 ,  0.90037102, -0.40624346,  0.65223524])

In [59]:
ensebmle_prob_validation = np.zeros(len(clf1_p))
for i in range(len(classifiers)):
    ensebmle_prob_validation += np.array(classifiers[i]) * w[i]

In [60]:
print log_loss(y_eval, ensebmle_prob_validation), roc_auc_score(y_eval, ensebmle_prob_validation)


0.691139261991 0.53506998657

In [38]:
def optimal(values):
    optimal_classifiers = []
    for i in range(len(values)):
        if values[i] > 0:
            print("Classifier", i+1, "is good")
            optimal_classifiers.append(classifiers[i])
    return optimal_classifiers

In [39]:
def full_negative_elimination(weights):
    global classifiers, Ps
    while sum(weights<0) > 0:
        opt = minimize(ensemble_logloss, x0=np.ones(len(classifiers)))
        print("Function result:", opt.fun)
        classifiers = optimal(opt.x)
        Ps = np.array(classifiers).T
        weights = opt.x/opt.x.sum()
        print("Current weights:", weights)
        print('=======')
    return weights

In [40]:
w = full_negative_elimination(w)


('Function result:', 0.6911392619336544)
('Classifier', 2, 'is good')
('Classifier', 4, 'is good')
('Current weights:', array([-0.1463628 ,  0.90037102, -0.40624346,  0.65223524]))
=======
('Function result:', 0.6911713540305157)
('Classifier', 1, 'is good')
('Classifier', 2, 'is good')
('Current weights:', array([ 0.74141642,  0.25858358]))
=======

In [61]:
dtest = xgb.DMatrix(test)
p1 = rf.predict_proba(test)[:,1]

#Logreg
p7 = lrCV.predict_proba(test)[:,1]

#xgb
p8 = clf.predict_proba(test)[:,1]

p3 = nn.predict_proba(test.values, verbose = 0)[:,1]

test_predictions = [p1, p7, p8, p3]

In [62]:
ensebmle_prob_test = np.zeros(len(p1))
for i in range(len(test_predictions)):
    ensebmle_prob_test += np.array(test_predictions[i]) * w[i]

In [63]:
pd.DataFrame(ensebmle_prob_validation).hist()


Out[63]:
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7f47b80631d0>]], dtype=object)

In [64]:
pd.DataFrame(ensebmle_prob_test).hist()


Out[64]:
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7f47be26a450>]], dtype=object)

In [65]:
submission = pd.DataFrame({"t_id":id_test, "probability":ensebmle_prob_test})
submission.to_csv("submission_ansemble.csv", index=False)

In [ ]: