In [8]:
import numpy as np
import pandas as pd
import gc
import time
from contextlib import contextmanager
from lightgbm import LGBMClassifier
from sklearn.metrics import roc_auc_score, roc_curve
from sklearn.model_selection import KFold, StratifiedKFold
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
@contextmanager
def timer(title):
t0 = time.time()
yield
print("{} - done in {:.0f}s".format(title, time.time() - t0))
# One-hot encoding for categorical columns with get_dummies
def one_hot_encoder(df, nan_as_category = True):
original_columns = list(df.columns)
categorical_columns = [col for col in df.columns if df[col].dtype == 'object']
df = pd.get_dummies(df, columns= categorical_columns, dummy_na= nan_as_category)
new_columns = [c for c in df.columns if c not in original_columns]
return df, new_columns
# Preprocess application_train.csv and application_test.csv
def application_train_test(num_rows = None, nan_as_category = False):
# Read data and merge
df = pd.read_csv(r'.\input\application_train.csv', nrows= num_rows)
test_df = pd.read_csv(r'.\input\application_test.csv', nrows= num_rows)
print("Train samples: {}, test samples: {}".format(len(df), len(test_df)))
df = df.append(test_df).reset_index()
# Optional: Remove 4 applications with XNA CODE_GENDER (train set)
df = df[df['CODE_GENDER'] != 'XNA']
docs = [_f for _f in df.columns if 'FLAG_DOC' in _f]
live = [_f for _f in df.columns if ('FLAG_' in _f) & ('FLAG_DOC' not in _f) & ('_FLAG_' not in _f)]
# NaN values for DAYS_EMPLOYED: 365.243 -> nan
df['DAYS_EMPLOYED'].replace(365243, np.nan, inplace= True)
inc_by_org = df[['AMT_INCOME_TOTAL', 'ORGANIZATION_TYPE']].groupby('ORGANIZATION_TYPE').median()['AMT_INCOME_TOTAL']
df['NEW_CREDIT_TO_ANNUITY_RATIO'] = df['AMT_CREDIT'] / df['AMT_ANNUITY']
df['NEW_CREDIT_TO_GOODS_RATIO'] = df['AMT_CREDIT'] / df['AMT_GOODS_PRICE']
df['NEW_DOC_IND_KURT'] = df[docs].kurtosis(axis=1)
df['NEW_LIVE_IND_SUM'] = df[live].sum(axis=1)
df['NEW_INC_PER_CHLD'] = df['AMT_INCOME_TOTAL'] / (1 + df['CNT_CHILDREN'])
df['NEW_INC_BY_ORG'] = df['ORGANIZATION_TYPE'].map(inc_by_org)
df['NEW_EMPLOY_TO_BIRTH_RATIO'] = df['DAYS_EMPLOYED'] / df['DAYS_BIRTH']
df['NEW_ANNUITY_TO_INCOME_RATIO'] = df['AMT_ANNUITY'] / (1 + df['AMT_INCOME_TOTAL'])
df['NEW_SOURCES_PROD'] = df['EXT_SOURCE_1'] * df['EXT_SOURCE_2'] * df['EXT_SOURCE_3']
df['NEW_EXT_SOURCES_MEAN'] = df[['EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3']].mean(axis=1)
df['NEW_SCORES_STD'] = df[['EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3']].std(axis=1)
df['NEW_SCORES_STD'] = df['NEW_SCORES_STD'].fillna(df['NEW_SCORES_STD'].mean())
df['NEW_CAR_TO_BIRTH_RATIO'] = df['OWN_CAR_AGE'] / df['DAYS_BIRTH']
df['NEW_CAR_TO_EMPLOY_RATIO'] = df['OWN_CAR_AGE'] / df['DAYS_EMPLOYED']
df['NEW_PHONE_TO_BIRTH_RATIO'] = df['DAYS_LAST_PHONE_CHANGE'] / df['DAYS_BIRTH']
df['NEW_PHONE_TO_BIRTH_RATIO_EMPLOYER'] = df['DAYS_LAST_PHONE_CHANGE'] / df['DAYS_EMPLOYED']
df['NEW_CREDIT_TO_INCOME_RATIO'] = df['AMT_CREDIT'] / df['AMT_INCOME_TOTAL']
# Categorical features with Binary encode (0 or 1; two categories)
for bin_feature in ['CODE_GENDER', 'FLAG_OWN_CAR', 'FLAG_OWN_REALTY']:
df[bin_feature], uniques = pd.factorize(df[bin_feature])
# Categorical features with One-Hot encode
df, cat_cols = one_hot_encoder(df, nan_as_category)
dropcolum=['FLAG_DOCUMENT_2','FLAG_DOCUMENT_4',
'FLAG_DOCUMENT_5','FLAG_DOCUMENT_6','FLAG_DOCUMENT_7',
'FLAG_DOCUMENT_8','FLAG_DOCUMENT_9','FLAG_DOCUMENT_10',
'FLAG_DOCUMENT_11','FLAG_DOCUMENT_12','FLAG_DOCUMENT_13',
'FLAG_DOCUMENT_14','FLAG_DOCUMENT_15','FLAG_DOCUMENT_16',
'FLAG_DOCUMENT_17','FLAG_DOCUMENT_18','FLAG_DOCUMENT_19',
'FLAG_DOCUMENT_20','FLAG_DOCUMENT_21']
df= df.drop(dropcolum,axis=1)
del test_df
gc.collect()
return df
# Preprocess bureau.csv and bureau_balance.csv
def bureau_and_balance(num_rows = None, nan_as_category = True):
bureau = pd.read_csv('./input/bureau.csv', nrows = num_rows)
bb = pd.read_csv('./input/bureau_balance.csv', nrows = num_rows)
bb, bb_cat = one_hot_encoder(bb, nan_as_category)
bureau, bureau_cat = one_hot_encoder(bureau, nan_as_category)
# Bureau balance: Perform aggregations and merge with bureau.csv
bb_aggregations = {'MONTHS_BALANCE': ['min', 'max', 'size']}
for col in bb_cat:
bb_aggregations[col] = ['mean']
bb_agg = bb.groupby('SK_ID_BUREAU').agg(bb_aggregations)
bb_agg.columns = pd.Index([e[0] + "_" + e[1].upper() for e in bb_agg.columns.tolist()])
bureau = pd.merge(bureau,bb_agg, how='left', left_index=True, right_index=True)
#bureau = bureau.join(bb_agg, how='left', on='SK_ID_BUREAU')
bureau.drop(['SK_ID_BUREAU'], axis=1, inplace= True)
del bb, bb_agg
gc.collect()
# Bureau and bureau_balance numeric features
num_aggregations = {
'DAYS_CREDIT': [ 'mean', 'var'],
'DAYS_CREDIT_ENDDATE': [ 'mean'],
'DAYS_CREDIT_UPDATE': ['mean'],
'CREDIT_DAY_OVERDUE': ['mean'],
'AMT_CREDIT_MAX_OVERDUE': ['mean'],
'AMT_CREDIT_SUM': [ 'mean', 'sum'],
'AMT_CREDIT_SUM_DEBT': [ 'mean', 'sum'],
'AMT_CREDIT_SUM_OVERDUE': ['mean'],
'AMT_CREDIT_SUM_LIMIT': ['mean', 'sum'],
'AMT_ANNUITY': ['max', 'mean'],
'CNT_CREDIT_PROLONG': ['sum'],
'MONTHS_BALANCE_MIN': ['min'],
'MONTHS_BALANCE_MAX': ['max'],
'MONTHS_BALANCE_SIZE': ['mean', 'sum']
}
# Bureau and bureau_balance categorical features
cat_aggregations = {}
for cat in bureau_cat: cat_aggregations[cat] = ['mean']
for cat in bb_cat: cat_aggregations[cat + "_MEAN"] = ['mean']
bureau_agg = bureau.groupby('SK_ID_CURR').agg({**num_aggregations, **cat_aggregations})
bureau_agg.columns = pd.Index(['BURO_' + e[0] + "_" + e[1].upper() for e in bureau_agg.columns.tolist()])
# Bureau: Active credits - using only numerical aggregations
active = bureau[bureau['CREDIT_ACTIVE_Active'] == 1]
active_agg = active.groupby('SK_ID_CURR').agg(num_aggregations)
active_agg.columns = pd.Index(['ACTIVE_' + e[0] + "_" + e[1].upper() for e in active_agg.columns.tolist()])
bureau_agg = pd.merge(bureau_agg,active_agg, how='left', left_index=True, right_index=True)
del active, active_agg
gc.collect()
# Bureau: Closed credits - using only numerical aggregations
closed = bureau[bureau['CREDIT_ACTIVE_Closed'] == 1]
closed_agg = closed.groupby('SK_ID_CURR').agg(num_aggregations)
closed_agg.columns = pd.Index(['CLOSED_' + e[0] + "_" + e[1].upper() for e in closed_agg.columns.tolist()])
bureau_agg = pd.merge(bureau_agg,closed_agg, how='left', left_index=True, right_index=True)
#bureau_agg = bureau_agg.join(closed_agg, how='left', on='SK_ID_CURR')
del closed, closed_agg, bureau
gc.collect()
return bureau_agg
# Preprocess previous_applications.csv
def previous_applications(num_rows = None, nan_as_category = True):
prev = pd.read_csv('./input/previous_application.csv', nrows = num_rows)
prev, cat_cols = one_hot_encoder(prev, nan_as_category= True)
# Days 365.243 values -> nan
prev['DAYS_FIRST_DRAWING'].replace(365243, np.nan, inplace= True)
prev['DAYS_FIRST_DUE'].replace(365243, np.nan, inplace= True)
prev['DAYS_LAST_DUE_1ST_VERSION'].replace(365243, np.nan, inplace= True)
prev['DAYS_LAST_DUE'].replace(365243, np.nan, inplace= True)
prev['DAYS_TERMINATION'].replace(365243, np.nan, inplace= True)
# Add feature: value ask / value received percentage
prev['APP_CREDIT_PERC'] = prev['AMT_APPLICATION'] / prev['AMT_CREDIT']
# Previous applications numeric features
num_aggregations = {
'AMT_ANNUITY': [ 'max', 'mean'],
'AMT_APPLICATION': [ 'max','mean'],
'AMT_CREDIT': [ 'max', 'mean'],
'APP_CREDIT_PERC': [ 'max', 'mean'],
'AMT_DOWN_PAYMENT': [ 'max', 'mean'],
'AMT_GOODS_PRICE': [ 'max', 'mean'],
'HOUR_APPR_PROCESS_START': [ 'max', 'mean'],
'RATE_DOWN_PAYMENT': [ 'max', 'mean'],
'DAYS_DECISION': [ 'max', 'mean'],
'CNT_PAYMENT': ['mean', 'sum'],
}
# Previous applications categorical features
cat_aggregations = {}
for cat in cat_cols:
cat_aggregations[cat] = ['mean']
prev_agg = prev.groupby('SK_ID_CURR').agg({**num_aggregations, **cat_aggregations})
prev_agg.columns = pd.Index(['PREV_' + e[0] + "_" + e[1].upper() for e in prev_agg.columns.tolist()])
# Previous Applications: Approved Applications - only numerical features
approved = prev[prev['NAME_CONTRACT_STATUS_Approved'] == 1]
approved_agg = approved.groupby('SK_ID_CURR').agg(num_aggregations)
approved_agg.columns = pd.Index(['APPROVED_' + e[0] + "_" + e[1].upper() for e in approved_agg.columns.tolist()])
prev_agg = pd.merge(prev_agg,approved_agg, how='left', left_index=True, right_index=True)
#prev_agg = prev_agg.join(approved_agg, how='left', on='SK_ID_CURR')
# Previous Applications: Refused Applications - only numerical features
refused = prev[prev['NAME_CONTRACT_STATUS_Refused'] == 1]
refused_agg = refused.groupby('SK_ID_CURR').agg(num_aggregations)
refused_agg.columns = pd.Index(['REFUSED_' + e[0] + "_" + e[1].upper() for e in refused_agg.columns.tolist()])
prev_agg = pd.merge(prev_agg,refused_agg, how='left', left_index=True, right_index=True)
#prev_agg = prev_agg.join(refused_agg, how='left', on='SK_ID_CURR')
del refused, refused_agg, approved, approved_agg, prev
gc.collect()
return prev_agg
# Preprocess POS_CASH_balance.csv
def pos_cash(num_rows = None, nan_as_category = True):
pos = pd.read_csv('./input/POS_CASH_balance.csv', nrows = num_rows)
pos, cat_cols = one_hot_encoder(pos, nan_as_category= True)
# Features
aggregations = {
'MONTHS_BALANCE': ['max', 'mean', 'size'],
'SK_DPD': ['max', 'mean'],
'SK_DPD_DEF': ['max', 'mean']
}
for cat in cat_cols:
aggregations[cat] = ['mean']
pos_agg = pos.groupby('SK_ID_CURR').agg(aggregations)
pos_agg.columns = pd.Index(['POS_' + e[0] + "_" + e[1].upper() for e in pos_agg.columns.tolist()])
# Count pos cash accounts
pos_agg['POS_COUNT'] = pos.groupby('SK_ID_CURR').size()
del pos
gc.collect()
return pos_agg
# Preprocess installments_payments.csv
def installments_payments(num_rows = None, nan_as_category = True):
ins = pd.read_csv('./input/installments_payments.csv', nrows = num_rows)
ins, cat_cols = one_hot_encoder(ins, nan_as_category= True)
# Percentage and difference paid in each installment (amount paid and installment value)
ins['PAYMENT_PERC'] = ins['AMT_PAYMENT'] / ins['AMT_INSTALMENT']
ins['PAYMENT_DIFF'] = ins['AMT_INSTALMENT'] - ins['AMT_PAYMENT']
# Days past due and days before due (no negative values)
ins['DPD'] = ins['DAYS_ENTRY_PAYMENT'] - ins['DAYS_INSTALMENT']
ins['DBD'] = ins['DAYS_INSTALMENT'] - ins['DAYS_ENTRY_PAYMENT']
ins['DPD'] = ins['DPD'].apply(lambda x: x if x > 0 else 0)
ins['DBD'] = ins['DBD'].apply(lambda x: x if x > 0 else 0)
# Features: Perform aggregations
aggregations = {
'NUM_INSTALMENT_VERSION': ['nunique'],
'DPD': ['max', 'mean', 'sum','min','std' ],
'DBD': ['max', 'mean', 'sum','min','std'],
'PAYMENT_PERC': [ 'max','mean', 'var','min','std'],
'PAYMENT_DIFF': [ 'max','mean', 'var','min','std'],
'AMT_INSTALMENT': ['max', 'mean', 'sum','min','std'],
'AMT_PAYMENT': ['min', 'max', 'mean', 'sum','std'],
'DAYS_ENTRY_PAYMENT': ['max', 'mean', 'sum','std']
}
for cat in cat_cols:
aggregations[cat] = ['mean']
ins_agg = ins.groupby('SK_ID_CURR').agg(aggregations)
ins_agg.columns = pd.Index(['INSTAL_' + e[0] + "_" + e[1].upper() for e in ins_agg.columns.tolist()])
# Count installments accounts
ins_agg['INSTAL_COUNT'] = ins.groupby('SK_ID_CURR').size()
del ins
gc.collect()
return ins_agg
# Preprocess credit_card_balance.csv
def credit_card_balance(num_rows = None, nan_as_category = True):
cc = pd.read_csv('./input/credit_card_balance.csv', nrows = num_rows)
cc, cat_cols = one_hot_encoder(cc, nan_as_category= True)
# General aggregations
cc.drop(['SK_ID_PREV'], axis= 1, inplace = True)
cc_agg = cc.groupby('SK_ID_CURR').agg([ 'max', 'mean', 'sum', 'var'])
cc_agg.columns = pd.Index(['CC_' + e[0] + "_" + e[1].upper() for e in cc_agg.columns.tolist()])
# Count credit card lines
cc_agg['CC_COUNT'] = cc.groupby('SK_ID_CURR').size()
del cc
gc.collect()
return cc_agg
# LightGBM GBDT with KFold or Stratified KFold
# Parameters from Tilii kernel: https://www.kaggle.com/tilii7/olivier-lightgbm-parameters-by-bayesian-opt/code
def kfold_lightgbm(df, num_folds, stratified = False, debug= False):
# Divide in training/validation and test data
train_df = df[df['TARGET'].notnull()]
test_df = df[df['TARGET'].isnull()]
print("Starting LightGBM. Train shape: {}, test shape: {}".format(train_df.shape, test_df.shape))
del df
gc.collect()
# Cross validation model
if stratified:
folds = StratifiedKFold(n_splits= num_folds, shuffle=True, random_state=47)
else:
folds = KFold(n_splits= num_folds, shuffle=True, random_state=47)
# Create arrays and dataframes to store results
oof_preds = np.zeros(train_df.shape[0])
sub_preds = np.zeros(test_df.shape[0])
feature_importance_df = pd.DataFrame()
feats = [f for f in train_df.columns if f not in ['TARGET','SK_ID_CURR','SK_ID_BUREAU','SK_ID_PREV','index']]
for n_fold, (train_idx, valid_idx) in enumerate(folds.split(train_df[feats], train_df['TARGET'])):
train_x, train_y = train_df[feats].iloc[train_idx], train_df['TARGET'].iloc[train_idx]
valid_x, valid_y = train_df[feats].iloc[valid_idx], train_df['TARGET'].iloc[valid_idx]
# LightGBM parameters found by Bayesian optimization
clf = LGBMClassifier(
boosting_type= 'gbdt',
colsample_bytree= 0.6014642048462456,
is_unbalance= False, learning_rate= 0.01222878983248616,
min_child_samples= 500, num_leaves= 126, reg_alpha= 0.07936876591402212,
reg_lambda= 0.28430717120489335, subsample_for_bin= 160000, subsample= 0.619083596793821,
metric= 'auc', verbose= 1000, n_estimators= 1115
)
clf.fit(train_x, train_y, eval_set=[(train_x, train_y), (valid_x, valid_y)],
eval_metric= 'auc', verbose= 1000, early_stopping_rounds= 200)
oof_preds[valid_idx] = clf.predict_proba(valid_x, num_iteration=clf.best_iteration_)[:, 1]
sub_preds += clf.predict_proba(test_df[feats], num_iteration=clf.best_iteration_)[:, 1] / folds.n_splits
fold_importance_df = pd.DataFrame()
fold_importance_df["feature"] = feats
fold_importance_df["importance"] = clf.feature_importances_
fold_importance_df["fold"] = n_fold + 1
feature_importance_df = pd.concat([feature_importance_df, fold_importance_df], axis=0)
print('Fold %2d AUC : %.6f' % (n_fold + 1, roc_auc_score(valid_y, oof_preds[valid_idx])))
del clf, train_x, train_y, valid_x, valid_y
gc.collect()
print('Full AUC score %.6f' % roc_auc_score(train_df['TARGET'], oof_preds))
# Write submission file and plot feature importance
if not debug:
test_df['TARGET'] = sub_preds
test_df[['SK_ID_CURR', 'TARGET']].to_csv(submission_file_name, index= False)
display_importances(feature_importance_df)
return feature_importance_df
# Display/plot feature importance
def display_importances(feature_importance_df_):
cols = feature_importance_df_[["feature", "importance"]].groupby("feature").mean().sort_values(by="importance", ascending=False)[:40].index
best_features = feature_importance_df_.loc[feature_importance_df_.feature.isin(cols)]
plt.figure(figsize=(8, 10))
sns.barplot(x="importance", y="feature", data=best_features.sort_values(by="importance", ascending=False))
plt.title('LightGBM Features (avg over folds)')
plt.tight_layout()
plt.savefig('lgbm_importances01.png')
In [9]:
def main(debug = False):
num_rows = 10000 if debug else None
df = application_train_test(num_rows)
with timer("Process bureau and bureau_balance"):
bureau = bureau_and_balance(num_rows)
print("Bureau df shape:", bureau.shape)
df = df.join(bureau, how='left', on='SK_ID_CURR')
del bureau
gc.collect()
with timer("Process previous_applications"):
prev = previous_applications(num_rows)
print("Previous applications df shape:", prev.shape)
df = df.join(prev, how='left', on='SK_ID_CURR')
del prev
gc.collect()
with timer("Process POS-CASH balance"):
pos = pos_cash(num_rows)
print("Pos-cash balance df shape:", pos.shape)
df = df.join(pos, how='left', on='SK_ID_CURR')
del pos
gc.collect()
with timer("Process installments payments"):
ins = installments_payments(num_rows)
print("Installments payments df shape:", ins.shape)
df = df.join(ins, how='left', on='SK_ID_CURR')
del ins
gc.collect()
with timer("Process credit card balance"):
cc = credit_card_balance(num_rows)
print("Credit card balance df shape:", cc.shape)
df = df.join(cc, how='left', on='SK_ID_CURR')
del cc
gc.collect()
with timer("Run LightGBM with kfold"):
feat_importance = kfold_lightgbm(df, num_folds= 5, stratified= False, debug= debug)
if __name__ == "__main__":
submission_file_name = "submission_kernel_paramOptim.csv"
with timer("Full model run"):
main()
In [ ]: