In [1]:
%matplotlib inline
import pandas as pd
import yellowbrick as yb
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression, Lasso
In [2]:
df = pd.read_csv('data/occupancy/occupancy.csv')
In [3]:
features = [
"temperature", "relative humidity", "light", "C02", "humidity"
]
classes = ["unoccupied", "occupied"]
In [4]:
X = df[features]
y = df['occupancy']
In [5]:
la = Lasso()
la.fit(X,y)
print(la.coef_)
In [6]:
lr = LogisticRegression()
lr.fit(X,y)
print(lr.coef_)
In [7]:
print(lr.coef_.flatten())