In [1]:
%matplotlib inline

import pandas as pd
import yellowbrick as yb
import matplotlib.pyplot as plt 

from sklearn.linear_model import LogisticRegression, Lasso

In [2]:
df = pd.read_csv('data/occupancy/occupancy.csv')

In [3]:
features = [
    "temperature", "relative humidity", "light", "C02", "humidity"
]
classes = ["unoccupied", "occupied"]

In [4]:
X = df[features]
y = df['occupancy']

In [5]:
la = Lasso()
la.fit(X,y)
print(la.coef_)


[-0.          0.          0.00170991  0.00015093  0.        ]

In [6]:
lr = LogisticRegression()
lr.fit(X,y)
print(lr.coef_)


[[-6.22110616e-01  1.06871188e-01  2.35735458e-02  3.42779586e-03
  -1.06125663e-05]]

In [7]:
print(lr.coef_.flatten())


[-6.22110616e-01  1.06871188e-01  2.35735458e-02  3.42779586e-03
 -1.06125663e-05]