In [1]:
from kbmodpy import kbmod as kb
from trajectoryFiltering import *
import numpy as np
import random as rd
import math
import matplotlib.pyplot as plt
import os
%matplotlib inline

In [2]:
def p_im(image):
    fig = plt.figure(figsize=(12,12))
    plt.imshow(image , origin='lower',  vmin=-200, vmax=100)#cmap=plt.cm.Greys_r,
    plt.xlabel('X Pixels')
    plt.ylabel('Y Pixels')
    plt.colorbar()

In [3]:
p = kb.psf(1.5)

In [10]:
im = kb.layered_image("test", 750, 750, 10.0, 100.0, 0.0)

In [11]:
im.add_object(300, 300, 1200, p)

In [12]:
im = im.get_science()

In [13]:
p_im(np.array(im))
np.array(im).mean()


Out[13]:
0.021239502

In [14]:
for _ in range(5):
    im = im.pool(1)

In [15]:
p_im(np.array(im))
np.array(im).mean()


Out[15]:
32.439438

In [ ]:


In [ ]: