In [1]:
import keras
import tensorflow as tf
print(keras.__version__)
print(tf.__version__)


Using TensorFlow backend.
2.0.4
1.1.0

In [90]:
import os
from os.path import join
import json
import random
import itertools
import re
import datetime
import cairocffi as cairo
import editdistance
import numpy as np
from scipy import ndimage
import pylab
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from keras import backend as K
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.layers import Input, Dense, Activation
from keras.layers import Reshape, Lambda
from keras.layers.merge import add, concatenate
from keras.models import Model, load_model
from keras.layers.recurrent import GRU
from keras.optimizers import SGD
from keras.utils.data_utils import get_file
from keras.preprocessing import image
import keras.callbacks
import cv2

In [3]:
sess = tf.Session()
K.set_session(sess)

In [4]:
print(K.image_data_format())


channels_last

In [5]:
from collections import Counter
def get_counter(dirpath):
    ann_dirpath = join(dirpath, 'ann')
    letters = ''
    lens = []
    for filename in os.listdir(ann_dirpath):
        json_filepath = join(ann_dirpath, filename)
        description = json.load(open(json_filepath, 'r'))['description']
        lens.append(len(description))
        letters += description
    print('Plate lengths:', Counter(lens))
    return Counter(letters)
c_train = get_counter('/data/001/train/')
c_val = get_counter('/data/001/train/')
letters_train = set(c_train.keys())
letters_val = set(c_val.keys())
print(len(letters_train), len(letters_val), len(letters_val & letters_train))
letters = sorted(list(letters_train))
print(' '.join(letters))


Plate lengths: Counter({8: 10788})
Plate lengths: Counter({8: 10788})
22 22 22
0 1 2 3 4 5 6 7 8 9 A B C E H K M O P T X Y

In [6]:
OUTPUT_DIR = 'image_ocr'

In [7]:
random.seed(55)

In [8]:
def text_to_labels(text):
    return list(map(lambda x: letters.index(x), text))

def is_valid_str(s):
    for ch in s:
        if not ch in letters:
            return False
    return True

class TextImageGenerator:
    
    def __init__(self, 
                 dirpath, 
                 img_w, img_h, 
                 batch_size, 
                 downsample_factor,
                 max_text_len=8):
        
        self.img_h = img_h
        self.img_w = img_w
        self.batch_size = batch_size
        self.max_text_len = max_text_len
        self.downsample_factor = downsample_factor
        
        img_dirpath = join(dirpath, 'img')
        ann_dirpath = join(dirpath, 'ann')
        self.samples = []
        for filename in os.listdir(img_dirpath):
            name, ext = os.path.splitext(filename)
            if ext == '.png':
                img_filepath = join(img_dirpath, filename)
                json_filepath = join(ann_dirpath, name + '.json')
                description = json.load(open(json_filepath, 'r'))['description']
                if is_valid_str(description):
                    self.samples.append([img_filepath, description])
        
        self.n = len(self.samples)
        self.indexes = list(range(self.n))
        self.cur_index = 0
        
    def build_data(self):
        self.imgs = np.zeros((self.n, self.img_h, self.img_w))
        self.texts = []
        for i, (img_filepath, text) in enumerate(self.samples):
            img = cv2.imread(img_filepath)
            img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            img = cv2.resize(img, (self.img_w, self.img_h))
            img = img.astype(np.float32)
            img /= 255
            # width and height are backwards from typical Keras convention
            # because width is the time dimension when it gets fed into the RNN
            self.imgs[i, :, :] = img
            self.texts.append(text)
        
    def get_output_size(self):
        return len(letters) + 1
    
    def next_sample(self):
        self.cur_index += 1
        if self.cur_index >= self.n:
            self.cur_index = 0
            random.shuffle(self.indexes)
        return self.imgs[self.indexes[self.cur_index]], self.texts[self.indexes[self.cur_index]]
    
    def next_batch(self):
        while True:
            # width and height are backwards from typical Keras convention
            # because width is the time dimension when it gets fed into the RNN
            if K.image_data_format() == 'channels_first':
                X_data = np.ones([self.batch_size, 1, self.img_w, self.img_h])
            else:
                X_data = np.ones([self.batch_size, self.img_w, self.img_h, 1])
            Y_data = np.ones([self.batch_size, self.max_text_len])
            input_length = np.ones((self.batch_size, 1)) * (self.img_w // self.downsample_factor - 2)
            label_length = np.zeros((self.batch_size, 1))
            source_str = []
                                   
            for i in range(self.batch_size):
                img, text = self.next_sample()
                img = img.T
                if K.image_data_format() == 'channels_first':
                    img = np.expand_dims(img, 0)
                else:
                    img = np.expand_dims(img, -1)
                X_data[i] = img
                Y_data[i] = text_to_labels(text)
                source_str.append(text)
                label_length[i] = len(text)
                
            inputs = {
                'the_input': X_data,
                'the_labels': Y_data,
                'input_length': input_length,
                'label_length': label_length,
                #'source_str': source_str
            }
            outputs = {'ctc': np.zeros([self.batch_size])}
            yield (inputs, outputs)

In [9]:
tiger = TextImageGenerator('/data/001/val', 128, 64, 8, 4)
tiger.build_data()

In [10]:
for inp, out in tiger.next_batch():
    if K.image_data_format() == 'channels_first':
        img = inp['the_input'][0, 0, :, :]
    else:
        img = inp['the_input'][0, :, :, 0]
    plt.imshow(img)
    plt.show()
    print(inp['the_labels'][0])
    print(inp['input_length'][0])
    print(inp['label_length'][0])
    #print(inp['source_str'][0])
    break


[ 19.   5.   4.   3.  21.  15.   9.   6.]
[ 30.]
[ 8.]

In [11]:
def ctc_lambda_func(args):
    y_pred, labels, input_length, label_length = args
    # the 2 is critical here since the first couple outputs of the RNN
    # tend to be garbage:
    y_pred = y_pred[:, 2:, :]
    return K.ctc_batch_cost(labels, y_pred, input_length, label_length)


def train(run_name, start_epoch, stop_epoch, img_w, load=False):
    # Input Parameters
    img_h = 64

    # Network parameters
    conv_filters = 16
    kernel_size = (3, 3)
    pool_size = 2
    time_dense_size = 32
    rnn_size = 512

    if K.image_data_format() == 'channels_first':
        input_shape = (1, img_w, img_h)
    else:
        input_shape = (img_w, img_h, 1)
        
    batch_size = 32
    downsample_factor = pool_size ** 2
    tiger_train = TextImageGenerator('/data/001/train', img_w, img_h, batch_size, downsample_factor)
    tiger_train.build_data()
    tiger_val = TextImageGenerator('/data/001/val', img_w, img_h, batch_size, downsample_factor)
    tiger_val.build_data()

    act = 'relu'
    input_data = Input(name='the_input', shape=input_shape, dtype='float32')
    inner = Conv2D(conv_filters, kernel_size, padding='same',
                   activation=act, kernel_initializer='he_normal',
                   name='conv1')(input_data)
    inner = MaxPooling2D(pool_size=(pool_size, pool_size), name='max1')(inner)
    inner = Conv2D(conv_filters, kernel_size, padding='same',
                   activation=act, kernel_initializer='he_normal',
                   name='conv2')(inner)
    inner = MaxPooling2D(pool_size=(pool_size, pool_size), name='max2')(inner)

    conv_to_rnn_dims = (img_w // (pool_size ** 2), (img_h // (pool_size ** 2)) * conv_filters)
    inner = Reshape(target_shape=conv_to_rnn_dims, name='reshape')(inner)

    # cuts down input size going into RNN:
    inner = Dense(time_dense_size, activation=act, name='dense1')(inner)

    # Two layers of bidirecitonal GRUs
    # GRU seems to work as well, if not better than LSTM:
    gru_1 = GRU(rnn_size, return_sequences=True, kernel_initializer='he_normal', name='gru1')(inner)
    gru_1b = GRU(rnn_size, return_sequences=True, go_backwards=True, kernel_initializer='he_normal', name='gru1_b')(inner)
    gru1_merged = add([gru_1, gru_1b])
    gru_2 = GRU(rnn_size, return_sequences=True, kernel_initializer='he_normal', name='gru2')(gru1_merged)
    gru_2b = GRU(rnn_size, return_sequences=True, go_backwards=True, kernel_initializer='he_normal', name='gru2_b')(gru1_merged)

    # transforms RNN output to character activations:
    inner = Dense(tiger_train.get_output_size(), kernel_initializer='he_normal',
                  name='dense2')(concatenate([gru_2, gru_2b]))
    y_pred = Activation('softmax', name='softmax')(inner)
    Model(inputs=input_data, outputs=y_pred).summary()

    labels = Input(name='the_labels', shape=[tiger_train.max_text_len], dtype='float32')
    input_length = Input(name='input_length', shape=[1], dtype='int64')
    label_length = Input(name='label_length', shape=[1], dtype='int64')
    # Keras doesn't currently support loss funcs with extra parameters
    # so CTC loss is implemented in a lambda layer
    loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length])

    # clipnorm seems to speeds up convergence
    sgd = SGD(lr=0.02, decay=1e-6, momentum=0.9, nesterov=True, clipnorm=5)

    if load:
        model = load_model('./tmp_model.h5', compile=False)
    else:
        model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)

    # the loss calc occurs elsewhere, so use a dummy lambda func for the loss
    model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer=sgd)
    
    if not load:
        if start_epoch > 0:
            weight_file = os.path.join(OUTPUT_DIR, os.path.join(run_name, 'weights%02d.h5' % (start_epoch - 1)))
            model.load_weights(weight_file)
        # captures output of softmax so we can decode the output during visualization
        test_func = K.function([input_data], [y_pred])

        model.fit_generator(generator=tiger_train.next_batch(), 
                            steps_per_epoch=tiger_train.n,
                            epochs=stop_epoch, 
                            validation_data=tiger_val.next_batch(), 
                            validation_steps=tiger_val.n,
                            initial_epoch=start_epoch)

    return model

In [12]:
run_name = datetime.datetime.now().strftime('%Y:%m:%d:%H:%M:%S')
#model = train(run_name, 0, 1, 128)
model = train(run_name, 0, 1, 128, load=True)


____________________________________________________________________________________________________
Layer (type)                     Output Shape          Param #     Connected to                     
====================================================================================================
the_input (InputLayer)           (None, 128, 64, 1)    0                                            
____________________________________________________________________________________________________
conv1 (Conv2D)                   (None, 128, 64, 16)   160         the_input[0][0]                  
____________________________________________________________________________________________________
max1 (MaxPooling2D)              (None, 64, 32, 16)    0           conv1[0][0]                      
____________________________________________________________________________________________________
conv2 (Conv2D)                   (None, 64, 32, 16)    2320        max1[0][0]                       
____________________________________________________________________________________________________
max2 (MaxPooling2D)              (None, 32, 16, 16)    0           conv2[0][0]                      
____________________________________________________________________________________________________
reshape (Reshape)                (None, 32, 256)       0           max2[0][0]                       
____________________________________________________________________________________________________
dense1 (Dense)                   (None, 32, 32)        8224        reshape[0][0]                    
____________________________________________________________________________________________________
gru1 (GRU)                       (None, 32, 512)       837120      dense1[0][0]                     
____________________________________________________________________________________________________
gru1_b (GRU)                     (None, 32, 512)       837120      dense1[0][0]                     
____________________________________________________________________________________________________
add_1 (Add)                      (None, 32, 512)       0           gru1[0][0]                       
                                                                   gru1_b[0][0]                     
____________________________________________________________________________________________________
gru2 (GRU)                       (None, 32, 512)       1574400     add_1[0][0]                      
____________________________________________________________________________________________________
gru2_b (GRU)                     (None, 32, 512)       1574400     add_1[0][0]                      
____________________________________________________________________________________________________
concatenate_1 (Concatenate)      (None, 32, 1024)      0           gru2[0][0]                       
                                                                   gru2_b[0][0]                     
____________________________________________________________________________________________________
dense2 (Dense)                   (None, 32, 23)        23575       concatenate_1[0][0]              
____________________________________________________________________________________________________
softmax (Activation)             (None, 32, 23)        0           dense2[0][0]                     
====================================================================================================
Total params: 4,857,319
Trainable params: 4,857,319
Non-trainable params: 0
____________________________________________________________________________________________________

In [13]:
net_inp = model.get_layer(name='the_input').input
net_out = model.get_layer(name='softmax').output

In [29]:
# For a real OCR application, this should be beam search with a dictionary
# and language model.  For this example, best path is sufficient.

def decode_batch(out):
    ret = []
    for j in range(out.shape[0]):
        out_best = list(np.argmax(out[j, 2:], 1))
        out_best = [k for k, g in itertools.groupby(out_best)]
        outstr = ''
        for c in out_best:
            if c < len(letters):
                outstr += letters[c]
        ret.append(outstr)
    return ret

In [48]:
texts[0]


Out[48]:
'M180OT07'

In [116]:
for inp_value, _ in tiger.next_batch():
    bs = inp_value['the_input'].shape[0]
    X_data = inp_value['the_input']
    net_out_value = sess.run(net_out, feed_dict={net_inp:X_data})
    pred_texts = decode_batch(net_out_value)
    labels = inp_value['the_labels']
    texts = []
    for label in labels:
        text = ''.join(list(map(lambda x: letters[int(x)], label)))
        texts.append(text)
    
    for i in range(bs):
        fig = plt.figure(figsize=(5, 5))
        outer = gridspec.GridSpec(2, 1, wspace=10, hspace=0.05)
        ax1 = plt.Subplot(fig, outer[0])
        fig.add_subplot(ax1)
        ax2 = plt.Subplot(fig, outer[1])
        fig.add_subplot(ax2)
        print('Pred: %s\nTrue: %s' % (pred_texts[i], texts[i]))
        img = X_data[i][:, :, 0].T
        ax1.set_label('Img')
        ax1.imshow(img)
        ax1.set_xticks([])
        ax1.set_yticks([])
        ax2.imshow(net_out_value[i].T, cmap='binary', interpolation='nearest')
        ax2.set_yticks(list(range(len(letters) + 1)))
        ax2.set_yticklabels(letters + ['blank'])
        ax2.grid(False)
        for h in np.arange(-0.5, len(letters) + 1 + 0.5, 1):
            ax2.axhline(h, linestyle='-', color='k', alpha=0.5, linewidth=1)
        
        #ax.axvline(x, linestyle='--', color='k')
        plt.show()
        break
    break


Pred: T006PK01
True: T006PK01

In [ ]: