In [11]:
import matplotlib.pyplot as plt
%matplotlib inline

In [12]:
fig = plt.figure()
ax = fig.add_subplot(2,1,1) # two rows, one column, first plot
import numpy as np
t = np.arange(0.0, 1.0, 0.01)
s = np.sin(2*np.pi*t)
line, = ax.plot(t, s, color='blue', lw=2)



In [13]:
ax.lines[0]


Out[13]:
<matplotlib.lines.Line2D at 0x148a00459e8>

In [14]:
fig


Out[14]:

In [15]:
line


Out[15]:
<matplotlib.lines.Line2D at 0x148a00459e8>

In [16]:
ax.lines.remove(line)

In [17]:
fig


Out[17]:

In [20]:
ax.lines.append(line)

In [21]:
fig


Out[21]:

In [22]:
xtext = ax.set_xlabel('my xdata') # returns a Text instance
ytext = ax.set_ylabel('my ydata')

In [23]:
fig


Out[23]:

In [24]:
plt.plot([1,2,3])


Out[24]:
[<matplotlib.lines.Line2D at 0x148a00dca58>]

In [25]:
plt.subplot(211)


Out[25]:
<matplotlib.axes._subplots.AxesSubplot at 0x148a00a3390>

In [26]:
plt.plot(range(12))


Out[26]:
[<matplotlib.lines.Line2D at 0x148a0186b00>]

In [27]:
plt.subplot(212, axisbg='y') # creates 2nd subplot with yellow background


Out[27]:
<matplotlib.axes._subplots.AxesSubplot at 0x148a0151cf8>

In [28]:
# plot a line, implicitly creating a subplot(111)
plt.plot([1,2,3])
# now create a subplot which represents the top plot of a grid
# with 2 rows and 1 column. Since this subplot will overlap the
# first, the plot (and its axes) previously created, will be removed
plt.subplot(211)
plt.plot(range(12))
plt.subplot(212, axisbg='y') # creates 2nd subplot with yellow background


Out[28]:
<matplotlib.axes._subplots.AxesSubplot at 0x148a026e710>

In [29]:
import matplotlib.pyplot as plt
import numpy as np

dt = 0.01
Fs = 1/dt
t = np.arange(0, 10, dt)
nse = np.random.randn(len(t))
r = np.exp(-t/0.05)

cnse = np.convolve(nse, r)*dt
cnse = cnse[:len(t)]
s = 0.1*np.sin(2*np.pi*t) + cnse

plt.subplot(3, 2, 1)
plt.plot(t, s)

plt.subplot(3, 2, 3)
plt.magnitude_spectrum(s, Fs=Fs)

plt.subplot(3, 2, 4)
plt.magnitude_spectrum(s, Fs=Fs, scale='dB')

plt.subplot(3, 2, 5)
plt.angle_spectrum(s, Fs=Fs)

plt.subplot(3, 2, 6)
plt.phase_spectrum(s, Fs=Fs)

plt.show()



In [ ]: