In [38]:
# standard imports:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
# use inline plots:
%matplotlib inline
# use ggplot style:
matplotlib.style.use('ggplot')
Our data is currently represented as a stack of 2D arrays (so a 3D "array"). In that implementation the third index is essentially a shot number and the first two are pixel row and pixel column. We'd like to make a dataframe of this data and then work with it in pandas instead of in an array. Another data type we have is the $K_p$ values (essentially the FFT output). In this case, it is a 1D array for each shot of data. The pandas version would be a dataframe with each element being a 1D array of $K_p$ values.
To test this, let's create a random dummy set that is 20 shots of 400 $K_p$ values:
In [10]:
# create an example dataframe:
df = pd.DataFrame(np.random.randn(20,400), index=np.arange(20), columns=1.23*np.arange(400))
In [11]:
df
Out[11]:
0.0
1.23
2.46
3.69
4.92
6.15
7.38
8.61
9.84
11.07
...
479.7
480.93
482.16
483.39
484.62
485.85
487.08
488.31
489.54
490.77
0
0.184962
-0.593215
0.189440
-0.041520
-0.468275
1.248782
-1.325620
0.712231
-0.162094
1.817380
...
-1.343064
-1.470482
0.735458
0.679417
-0.240810
-0.455247
-0.493477
0.546133
-0.093801
-0.870588
1
0.330364
1.285958
0.221395
-0.679064
-0.605855
-1.138653
0.432561
-0.072273
-0.031589
-0.955335
...
0.403545
-0.294596
-0.046364
1.550566
1.322492
0.158821
0.156565
-0.445687
-2.098845
-1.161122
2
-0.248033
-0.075215
1.170656
0.055841
-0.277661
0.005537
0.479036
0.754289
-0.441990
-1.282790
...
-0.323793
-3.010945
0.336506
-0.325221
0.376113
0.062601
-0.838108
-1.102468
0.338594
0.423082
3
1.721958
-0.023670
-1.054532
1.613846
0.368450
1.702158
-0.076590
-1.169031
0.483357
0.935780
...
-0.178595
1.032906
-2.016839
2.064577
1.685427
-0.653712
-1.918819
0.239802
0.550428
-1.531779
4
1.571422
-0.108286
0.329186
-0.399168
-0.406936
0.530031
-1.320046
-1.747431
-1.522011
1.004620
...
-1.139332
0.549895
1.571382
0.940728
-0.602542
0.138620
-0.593473
0.266806
-0.832163
-1.852263
5
-0.086009
0.595296
0.425701
1.522184
1.367878
1.281471
-0.541161
1.061773
-0.184506
-0.372571
...
0.419337
-0.072765
2.219141
-0.960565
-1.141693
0.024791
-1.159445
1.722109
-0.048243
1.181456
6
0.663104
1.017888
-0.049473
-0.651722
0.167377
0.377671
-0.467855
0.071341
0.123341
-0.587914
...
-1.230849
-1.044841
0.162082
-0.314299
-0.799146
-0.199157
0.314127
0.213541
1.427636
0.283838
7
-0.419924
-0.354931
0.916886
-0.751909
1.013355
-1.736379
0.522979
0.470240
-0.634015
-0.360114
...
1.375368
-0.968433
0.362897
-1.411900
0.530603
1.166181
0.625223
-0.266564
-0.570224
-0.822201
8
0.168113
0.887247
-1.040347
0.194861
0.442004
0.275889
-0.243377
1.089206
0.664697
0.223828
...
-0.928463
0.471350
0.490348
0.217929
-0.883274
-0.421726
1.486858
0.689218
0.754216
0.110106
9
1.186498
-0.960690
-0.348566
0.990295
0.675831
0.761218
-0.542745
0.261024
0.001028
1.173646
...
-0.059401
0.616330
-1.674507
-1.064985
0.535332
-1.322795
-1.539502
0.532675
0.173978
1.202523
10
-1.352537
-0.425472
0.879962
-0.239729
-0.233018
0.734855
1.006921
0.607420
-1.669254
-0.693078
...
-0.659705
0.788002
0.248544
-1.297290
0.316705
-0.207468
-0.405590
0.842259
0.514191
0.423534
11
1.599110
-0.100259
0.878009
-0.890536
1.438008
1.520079
-1.695664
-1.685915
-0.833511
0.277582
...
1.975432
0.831157
-0.004321
-0.091759
-0.384815
-1.432872
1.437886
2.025241
-1.649293
-1.123986
12
0.663158
-0.613900
0.652613
1.288169
0.154322
1.274050
0.246589
0.623908
-0.535676
0.181517
...
-1.122317
-2.191370
-0.585120
-1.325936
-0.674683
-1.193839
0.398804
0.260643
-0.042832
-0.139533
13
-0.645737
-0.510152
-1.005171
-1.624530
0.898106
0.066679
0.874028
-1.401223
-0.057903
0.582753
...
-1.380020
-2.512605
1.118588
0.634844
0.301920
0.236669
-0.509022
0.171967
-0.814506
-0.306371
14
1.321814
-0.774301
-1.902708
1.957949
2.112021
0.815829
-2.043558
-0.020623
0.595277
-0.107277
...
-0.427886
-0.090893
0.283438
0.656301
0.766152
-1.237433
1.099856
-0.036330
-1.391981
0.906868
15
-0.803413
0.036083
-0.761519
-1.115538
0.178751
-0.937486
0.237419
0.474481
-1.090644
0.645634
...
-1.528687
0.021469
0.147363
0.549197
0.077641
-1.080116
1.058282
0.961617
0.005075
0.570475
16
0.761742
0.049620
0.740389
-1.541954
-0.477572
-0.396389
0.217273
-0.255407
0.067497
0.006614
...
0.082712
0.449123
-0.875030
-0.495502
-2.268136
0.375531
-1.265048
0.530770
-1.081555
-1.910912
17
1.494090
0.608071
-0.028324
0.413887
0.340919
-0.401112
-0.439394
-0.441322
-0.155351
1.351053
...
-1.021816
-0.639324
0.622632
0.691260
-0.438366
0.321922
-0.595063
1.005989
-0.511210
-0.248449
18
1.839444
0.250622
0.030625
0.658200
-0.525802
1.183947
0.920444
0.297210
0.194203
0.366299
...
1.459953
0.212683
0.216094
-0.430931
-0.885898
-0.151657
-0.829574
0.051659
0.822611
-0.310205
19
-1.863444
1.019783
0.423566
-1.553650
0.802445
0.083260
-0.491350
2.118290
0.345122
2.467606
...
0.481893
1.324027
-0.285335
-1.192188
1.645913
-0.321261
2.514560
-0.868827
-0.813402
-0.029505
20 rows × 400 columns
So we see a few nice features:
To show this, we'll create a list of the row labels using a list comprehension. Note, this could also be done with a generator, but that is a more advanced pythonism
In [12]:
# nested string list comprehension:
rows = ["r{}s{}".format(i,j) for i in np.arange(4) for j in np.arange(5)]
In [13]:
# could also be a generator:
row_gen = ("r{}s{}".format(i,j) for i in np.arange(4) for j in np.arange(5))
In [14]:
for i in row_gen:
print(i)
r0s0
r0s1
r0s2
r0s3
r0s4
r1s0
r1s1
r1s2
r1s3
r1s4
r2s0
r2s1
r2s2
r2s3
r2s4
r3s0
r3s1
r3s2
r3s3
r3s4
In [15]:
df2 = pd.DataFrame(np.random.randn(20,400), index=rows, columns=1.23*np.arange(400))
In [16]:
df2
Out[16]:
0.0
1.23
2.46
3.69
4.92
6.15
7.38
8.61
9.84
11.07
...
479.7
480.93
482.16
483.39
484.62
485.85
487.08
488.31
489.54
490.77
r0s0
-0.075841
-0.904605
-1.094072
0.605669
-1.935258
0.650063
0.660024
-2.170779
1.076856
-0.521928
...
1.028115
-0.131176
1.219894
0.364914
1.028008
-0.210408
0.584433
0.022389
0.198800
2.394047
r0s1
0.464307
0.507541
-0.215419
-0.744910
1.049569
-0.146941
0.288519
0.591788
-1.127253
-0.838182
...
0.611890
-0.847824
-0.776338
-0.056745
0.168138
-0.413380
-0.136623
1.508007
0.763493
-1.961929
r0s2
0.549017
-0.010613
0.350341
0.600244
0.564113
-0.135829
-0.530846
-0.960254
0.759039
-0.449446
...
0.624111
-0.088894
-1.126249
0.604857
-1.559714
1.838663
-1.085178
-1.633170
-0.223984
-0.287379
r0s3
0.854825
1.083141
-1.502872
0.215501
1.037609
0.905728
-0.099644
-0.872863
0.409028
-0.392250
...
-1.517258
0.598385
-0.585482
0.333990
-0.100666
-0.024075
-0.180373
-1.391312
2.034463
1.557063
r0s4
-0.540168
-2.024637
1.521336
0.458756
0.031326
-0.362836
0.002126
-0.623581
0.187056
-1.338258
...
0.124124
1.468026
0.705380
-1.086340
-1.358901
-0.294727
-0.324702
-0.815423
0.256468
1.090099
r1s0
0.826986
-0.842467
1.049514
1.150837
-0.785820
0.429018
1.115340
1.307672
0.376442
0.854339
...
-0.429645
-0.675573
-0.810689
0.187499
0.262096
0.496407
-0.978998
-0.594335
-0.133461
2.547492
r1s1
-2.407435
0.084073
0.926649
-1.474173
1.498178
0.161716
1.031246
-0.094132
-0.994738
-1.276429
...
0.244866
0.988604
-0.210704
-0.633346
-1.639042
2.043875
0.916145
1.058196
-0.923993
0.696969
r1s2
-0.553663
0.260108
0.565609
0.348731
-0.222907
1.454296
-0.804949
-1.058964
0.146190
1.406294
...
0.778546
-0.583378
-1.960605
-2.030100
0.323722
-1.504652
-0.222541
0.062490
0.261073
0.655042
r1s3
-1.923620
1.897037
1.345015
-1.532653
0.272023
0.384065
1.002208
0.272557
-0.646553
-0.312436
...
-0.196265
1.047866
0.542254
0.372460
0.896880
0.828275
-1.182366
-0.272894
-0.625088
0.087952
r1s4
-1.186381
0.669413
0.760152
-0.552006
0.521368
-0.949405
-0.020145
-0.090695
-1.702185
-0.757083
...
1.690140
0.634193
-1.026187
1.614171
-0.463188
0.336056
-1.407198
-1.658494
-2.787294
-0.790165
r2s0
0.990522
-0.961763
0.439112
0.885652
1.450123
-0.499534
0.938854
1.408904
-0.740930
-0.140112
...
-0.063761
-0.626640
0.041427
-0.345510
0.431423
-0.716702
1.691901
-0.428716
-0.836942
-0.288951
r2s1
-0.519180
-1.298858
0.250681
-1.190024
0.106520
-0.095677
0.615137
0.495602
-0.212434
-0.349042
...
-1.641367
-0.665836
0.256332
0.451142
1.305498
-0.108231
0.204788
0.869855
-0.266288
1.509643
r2s2
0.734422
0.476790
-0.458226
-0.700024
-1.238566
0.599671
-0.427914
0.844219
-0.270551
0.492769
...
-1.239655
1.126015
-0.550496
-0.761821
-0.531756
-0.332588
-0.523914
-0.290804
0.246082
-0.102039
r2s3
-0.853220
-2.093568
-0.643340
0.200368
-0.716152
-1.126140
-0.698815
-0.416204
-0.544038
0.368496
...
-1.466966
1.246151
0.064958
-1.270758
1.034440
-0.975365
-0.009970
-0.033534
-1.204973
1.992776
r2s4
-1.734340
1.018595
1.145354
-0.112782
0.590931
1.525264
-1.583458
0.948296
1.711134
0.053377
...
0.133120
0.159131
1.151579
-0.270983
-0.793256
-0.395818
-0.000882
-0.871829
-0.321323
0.475428
r3s0
-0.783272
0.549246
0.912964
-0.846065
-0.347537
0.244262
-1.921135
0.290666
1.023833
0.347094
...
-0.121621
-0.236661
0.837270
-1.076396
-0.592567
-2.097988
-0.013013
0.231985
-1.345679
2.884452
r3s1
0.290483
0.363594
2.177999
-0.156987
-0.939555
0.443229
1.458815
2.574376
-1.076518
-0.363016
...
1.702962
1.722178
0.999881
0.184068
-0.614013
-0.598080
-0.728771
-0.300455
1.025306
-0.240906
r3s2
-1.332260
-0.925884
-0.835553
-0.015138
1.851840
0.090223
0.281905
-0.100410
0.095656
-1.359204
...
0.326450
-0.434180
0.019184
1.248174
-0.215904
0.850511
0.770674
0.306296
1.293982
-1.435372
r3s3
0.200371
-0.846563
1.856579
-0.600437
0.725963
0.383318
0.835080
-0.656290
-0.978341
0.180849
...
-0.889134
-0.567104
0.826408
-0.337061
-0.099261
-0.017822
-0.381713
0.862280
-0.116477
-1.101553
r3s4
-0.753709
-0.070955
-0.344824
-0.385953
-0.344296
-2.013347
0.147098
-0.802810
-1.089017
-0.130341
...
0.140231
-0.945284
1.047795
1.883125
-0.141678
-0.783196
1.150965
-0.080518
-1.244698
1.317814
20 rows × 400 columns
Now we can start to use these data structures in the CCDimage code. It is important to note, that the values can be complex too!
In [17]:
# complex example:
df3 = pd.DataFrame(np.random.randn(20,400) + 0.1*np.random.randn(20,400)*1j, index=rows, columns=1.23*np.arange(400))
In [18]:
df3
Out[18]:
0.0
1.23
2.46
3.69
4.92
6.15
7.38
8.61
9.84
11.07
...
479.7
480.93
482.16
483.39
484.62
485.85
487.08
488.31
489.54
490.77
r0s0
(-1.23576271913-0.185847883574j)
(0.0529216538903+0.129158233718j)
(0.724415189064-0.104322240946j)
(-1.65301916201+0.0720106546298j)
(-0.141481016733+0.0361646764067j)
(-0.222757669741+0.0400796456564j)
(-0.21361548993-0.0837229942064j)
(0.943233544682-0.140260846666j)
(0.567894567351+0.0306696240982j)
(-0.902016328789+0.114131753957j)
...
(-1.85902244304+0.0287101151056j)
(0.921572078908-0.0710246678393j)
(1.10489339086-0.0788672179216j)
(-0.612657340247+0.0228959362189j)
(-1.1688038002-0.156471551294j)
(-0.512148594723-0.0535613010007j)
(-0.756125963407-0.044222458599j)
(-0.0407041390489+0.0460788111033j)
(0.534728902924-0.0871808137524j)
(0.132200155724+0.112614834113j)
r0s1
(-0.981939512432-0.0248213642288j)
(0.201676834287+0.0332533538591j)
(0.0949735642599-0.0258463075781j)
(0.689998693135-0.0221663676157j)
(0.830687375073-0.122014801224j)
(-0.0578329368654+0.000577935992641j)
(-0.422836392466-0.00451085096533j)
(1.89934636394+0.145107214683j)
(-1.30492029544-0.0293904757063j)
(0.41542992756+0.0502382949271j)
...
(-0.907980881357-0.00268087934794j)
(-1.52999786965+0.100707843497j)
(-0.209042624375-0.0286618206328j)
(1.7737107014-0.0612318574594j)
(1.56208020143-0.047036681766j)
(-0.113889705226-0.0855435839874j)
(2.01444713869+0.138536183898j)
(-0.00361846728525+0.0192697989978j)
(-2.2019193176+0.0904283692218j)
(1.89656761249+0.0496429097914j)
r0s2
(1.82821071571-0.128909197042j)
(0.282695903252+0.242320343889j)
(0.872022068555-0.038784238982j)
(-0.260669350793+0.0452001076767j)
(-1.03357135086+0.0921465638993j)
(0.993268356513-0.0285577214136j)
(0.664639869899+0.0123485504631j)
(-0.308572119062+0.0510162819116j)
(-1.3338067307+0.0699766785877j)
(0.43264868511+0.249764435176j)
...
(1.35273043652+0.16129558619j)
(0.682096489939+0.0635030727058j)
(0.939696576024+0.0486226908048j)
(0.116823836128-0.0815454113263j)
(0.159117521664-0.0160049236552j)
(0.880833567556-0.0983183596752j)
(-1.34766497156-0.0644888627501j)
(0.203560604553-0.0904372028935j)
(-0.902965768874+0.101847259066j)
(-1.68656584589-0.34389148341j)
r0s3
(-1.65411525983+0.0603759040104j)
(0.730948292173+0.0543433215511j)
(0.800166204462-0.157672412276j)
(0.774865308574+0.077598975352j)
(0.412742895736-0.00391215940931j)
(-1.55615539458-0.0218819585597j)
(1.13983471196-0.0848267311961j)
(0.98468757961-0.0669251013132j)
(1.18987141395-0.022651511229j)
(-0.142564399548-0.00580960750606j)
...
(-0.521348681699+0.0828146100835j)
(0.858624116016-0.234377466052j)
(1.31582349083-0.0740040124741j)
(0.661047036604-0.105962870648j)
(-0.296258381424-0.106262729265j)
(0.585448302958+0.00873285003745j)
(0.0773041569774-0.0801649117916j)
(-0.298031886124-0.179873551867j)
(-0.424452912506+0.00641296571024j)
(1.14277935313-0.0433534432288j)
r0s4
(0.532960469669+0.060992160528j)
(-0.466207894849-0.141470109493j)
(-0.535656789752-0.0190094466983j)
(-1.50120745986-0.0304633480535j)
(-1.09560350726+0.142564263722j)
(-0.827240055295-0.119204632388j)
(0.470986902616-0.00493941945321j)
(-0.559715502024-0.0607958298194j)
(0.674368139181-0.0539698630908j)
(1.81803386204-0.103103778697j)
...
(-1.00228309014-0.020852228131j)
(-0.73659892209-0.00914835489865j)
(2.46517819721-0.0175754150102j)
(0.35829962055-0.053494484444j)
(-1.68000068509+0.0381826143409j)
(-1.18632981202+0.0312460319758j)
(-1.57648660658+0.116982019007j)
(0.0592202718681+0.10224268974j)
(-0.705469232509+0.188978635528j)
(0.940453997001+0.200955905689j)
r1s0
(-0.0831914112863+0.163198685809j)
(-0.932399221793-0.0270127921806j)
(0.427573887868-0.00445047155494j)
(-0.000164779002153-0.0770934811935j)
(-0.60524235923+0.00705692043108j)
(0.502600036119+0.0137702987694j)
(0.409688265918-0.0165393442579j)
(1.22242718331+0.0143142027866j)
(1.94188539922-0.00801615876049j)
(0.617609373478+0.0584193356061j)
...
(0.490887761887+0.0561030719528j)
(-1.42813701998+0.133173571147j)
(0.57084612047+0.105991452859j)
(1.08312328436-0.0472424968793j)
(-0.774689873352-0.0762190053713j)
(-0.560759666671+0.0903862374683j)
(0.118198608503+0.0267582492836j)
(0.788042868258-0.0725105868995j)
(-0.227261419287+0.00541815982323j)
(-1.25674127573-0.0267763055207j)
r1s1
(-0.319712138997-0.152039426621j)
(0.962655283964-0.243310222492j)
(0.320005444684-0.0870593939857j)
(1.27041390617-0.0120088668168j)
(-2.51556821593+0.0685790831661j)
(-0.201284566126+0.0260898243789j)
(2.43213174024-0.087934813983j)
(-0.0996718667154+0.0786513923389j)
(-0.456466319497-0.142287806773j)
(-0.23715405766+0.0540842593935j)
...
(1.09841370877-0.1940510802j)
(-0.33820358124-0.0492889902562j)
(-0.051926884372+0.0973298562776j)
(1.77457072607-0.0959492043426j)
(-2.38103188069+0.069932995824j)
(-0.970222044917+0.00067614039896j)
(-1.12675579635+0.0335868951329j)
(1.53142098606+0.152792493145j)
(0.213834644546-0.16115113382j)
(-0.0968034623865-0.171325028243j)
r1s2
(0.831727824633-0.00318901160347j)
(0.670548044311-0.125513485758j)
(-2.06714582736-0.00875867430169j)
(-0.654725965821+0.0119019903557j)
(-0.653645883852+0.0241122954628j)
(1.20828629401+0.282712860759j)
(-0.63336936082-0.137097406702j)
(-0.427047335452+0.0667830651225j)
(-0.0543230476242+0.0381590010805j)
(-0.103057538537-0.0317915405261j)
...
(-1.76133869177+0.022786358294j)
(-1.26405242912-0.00412356178994j)
(1.20109198572-0.0125398053077j)
(-2.42626474326-0.103746205012j)
(0.260087881332+0.190255710124j)
(0.840563908149+0.0665444871917j)
(0.853656651832-0.108262152423j)
(-0.097265347589-0.0666623011706j)
(-0.764838279961+0.132936391357j)
(-0.655976301017+0.0658942429166j)
r1s3
(-1.37525605478+0.0678864165322j)
(1.39843366771+0.149282493709j)
(-1.07043186243-0.138601350921j)
(0.226995259392-0.170678108606j)
(-0.592956598071-0.011135640728j)
(-1.13633140889-0.0977114880465j)
(0.71793208664-0.0472079625352j)
(0.484789162651+0.0190007791447j)
(0.670024169896-0.182424052248j)
(-1.64848135044-0.0356758571558j)
...
(-0.523358560066+0.17072233912j)
(-0.0573552953067+0.0234892239801j)
(0.562182689716+0.154433036795j)
(-1.09795087178+0.160299537214j)
(-1.26272257316+0.0405699118969j)
(1.0112775784-0.151859713973j)
(1.34656374214+0.0209350360603j)
(-0.352742637211+0.0387787941876j)
(-2.10893766757+0.0289713708344j)
(0.564553178309+0.0892860029922j)
r1s4
(-1.35864957725-0.0447250801488j)
(0.779966888467+0.0136621556124j)
(0.928722579336+0.0239251376435j)
(0.704362820544-0.100896397765j)
(1.11845252976-0.0201786108752j)
(1.41187663+0.0561016914286j)
(0.256765284857-0.0425308436599j)
(-1.12964774924-0.0493718921286j)
(-0.289643117248-0.0901042557157j)
(1.82986058501-0.053617359593j)
...
(0.775279336714-0.0020430818306j)
(0.79349394592+0.0458080908247j)
(-0.636097338349-0.0223110597175j)
(-0.0942871617806-0.0385916912193j)
(-0.54854356993-0.123682849729j)
(-0.287895794729-0.139519267459j)
(-1.65203801979+0.0580922015492j)
(-0.850825581176+0.0911781358634j)
(1.77223438561+0.112060054574j)
(-0.142146663816-0.0392379373917j)
r2s0
(0.277619243623-0.0427957406739j)
(0.454509711444+0.0363555439813j)
(-1.40515793167-0.0131875788012j)
(-0.815207408487-0.013487555092j)
(-0.879677699096-0.0322959498321j)
(-0.0412191284588+0.166378236118j)
(2.17966690677+0.155304972191j)
(0.190455011781+0.040304323902j)
(0.609729657567-0.155021391074j)
(1.70810811617-0.0639315943095j)
...
(1.02422026105-0.0838735917413j)
(0.739515224746-0.262301328956j)
(-0.00569714348009-0.0630193480716j)
(0.478751031276-0.0463151243236j)
(1.47355875614+0.0810156047213j)
(-2.1078851683-0.126895542499j)
(-0.900674407479-6.03316465891e-05j)
(-0.87699862263-0.0971644616491j)
(1.03894530595-0.0753399206228j)
(-1.02333376986-0.0265737025497j)
r2s1
(0.524313763169+0.0189397616475j)
(-0.388311328443+0.071677014751j)
(-0.644299314804+0.19351122174j)
(-0.541380022681-0.178178835193j)
(1.02854161477+0.104390852437j)
(-0.707628295546+0.116185494295j)
(0.685896371347+0.242698503057j)
(0.119642948333+0.178675744246j)
(-2.010728999-0.0271840451421j)
(1.02711500043+0.0220540172164j)
...
(-0.606532092063+0.177257146212j)
(0.979674588224+0.157539648066j)
(0.929940730983-0.0275762229916j)
(0.141661562777-0.176059043843j)
(-0.0226442496019-0.00766434004073j)
(0.804932713132-0.0197916726564j)
(-0.774998828128-0.109170097404j)
(-1.21500939419-0.0226419409204j)
(0.432351070057-0.112096207893j)
(-0.623104127852+0.162751485932j)
r2s2
(0.19191303557-0.00443282551489j)
(1.09113477106-0.0290818741361j)
(-0.318858525415+0.0539055964992j)
(1.46363984723-0.178994583996j)
(-0.477411909318-0.0973601218972j)
(0.961024377412+0.0610789859716j)
(-1.6549532995+0.110539365688j)
(0.265897462138+0.0369672524016j)
(1.67912122761+0.122387494111j)
(-0.934075683675-0.00994285460239j)
...
(0.952272211831+0.0191264579956j)
(1.48656439513+0.020229068593j)
(1.08380360247+0.0721547133717j)
(-0.545582249859-0.0144008488916j)
(0.35824142991-0.181217990671j)
(0.608126477974+0.0126074757375j)
(0.504841780735+0.0357286720151j)
(-0.318060048709-0.129518631333j)
(-1.92077387202-0.00295015613251j)
(1.23116071305-0.077373931922j)
r2s3
(0.193914147223-0.0685759408907j)
(-0.0107207597223+0.0360968517764j)
(0.0518486323549+0.0958714907186j)
(-0.697514531795-0.222074097922j)
(0.842644278679-0.0817592408113j)
(-0.314372692329-0.0397710203659j)
(1.01161575823+0.0342086303863j)
(1.94968533822-0.0880207989501j)
(-1.16107622524+0.0445044977446j)
(-0.578112928577-0.255515206264j)
...
(0.950842321374+0.0256744399117j)
(-1.59482251819-0.0310176505923j)
(2.40615779281+0.016482678391j)
(1.44914992112-0.0825611459205j)
(-1.67706630796-0.0991907682338j)
(-0.406479825809-0.0474725552964j)
(-0.103273724421+0.0318583452567j)
(-0.82176688448+0.105537370183j)
(1.04343824798+0.216775914389j)
(-0.269981013517+0.0757249971957j)
r2s4
(1.26312298098+0.0353078386081j)
(0.0533283352593+0.10201972423j)
(1.60921928791-0.236581622652j)
(0.522521249696+0.0108511353459j)
(-0.967412770576+0.0812200386155j)
(-0.193614131481-0.0774930960243j)
(0.9006873442+0.131892223023j)
(-0.357434703123+0.0680903962007j)
(0.508501337968-0.166044855544j)
(-0.962241021062-0.0554235959826j)
...
(0.309937655799+0.229761610388j)
(0.578970754697+0.138883337038j)
(0.0562531454811+0.0570736542305j)
(0.678386157803-0.0169637315075j)
(0.299387418537-0.0813273573021j)
(-0.924431274846+0.102748278726j)
(-0.895829098463+0.0463847585675j)
(0.393481278578-0.0160656428025j)
(0.346289438182-0.0346145319213j)
(-0.242447949706-0.0450311580246j)
r3s0
(0.373796254925+0.154708294713j)
(-1.31989898631+0.0443768735327j)
(0.90529876174+0.0212612189138j)
(0.61297741336-0.15236636986j)
(-0.395771039549-0.14107214228j)
(-0.818347497072+0.114746699381j)
(-0.843940397708+0.0106815881074j)
(-0.00297870741756-0.0341999546688j)
(-1.06812694201+0.0144676965427j)
(-1.25812808785-0.0954030642623j)
...
(-0.0469815160827+0.0232703058459j)
(0.24470416322+0.164586916579j)
(1.95366721279-0.169896505798j)
(1.16027384463-0.0734668213404j)
(-0.202029190031-0.160334075452j)
(1.24668565404+0.126363573094j)
(0.999094720001+0.0595224992118j)
(1.33229853348-0.00655201071896j)
(1.62795450112+0.0756362616671j)
(-2.53887641653+0.0571107676056j)
r3s1
(-1.97452985187-0.00917296924165j)
(-0.044038492442-0.0533890772792j)
(0.0986571181164+0.0710607280918j)
(-1.1207128996+0.0586751903985j)
(-1.5802345318-0.0334258835107j)
(0.12135481213-0.0837061277687j)
(-0.822756383009+0.0918955806026j)
(0.262795552307-0.163477735507j)
(0.468747437275+0.107957622074j)
(-1.28757025168+0.062082210564j)
...
(0.324517453127-0.0994012120212j)
(-0.726165686889-0.0214926813727j)
(0.670027504726-0.067414825192j)
(0.672493610096+0.0259248657871j)
(1.15051072605-0.0835546880332j)
(-1.38438661204+0.0219637888629j)
(-0.00436738953142+0.0626452726052j)
(-0.250798820508+0.0744165104815j)
(1.2172410505-0.0602919040257j)
(1.20402719323+0.0942937778706j)
r3s2
(-0.733355394908+0.056188510842j)
(-0.296812258943-0.026928650419j)
(2.09901585316+0.0526436018032j)
(0.182775108299+0.115145887806j)
(-1.1379775679-0.0759761080345j)
(-1.14674798938-0.0278691624333j)
(0.239838433415+0.0632058032046j)
(-0.677137889436-0.0456090271711j)
(0.489696281226-0.0696107586012j)
(-0.205295893752+0.0645651443053j)
...
(0.927739415542+0.0779916955444j)
(0.214939857223+0.116549139614j)
(-0.379743555744+0.0572046696832j)
(-0.373751223244-0.212776530072j)
(0.308789167635-0.182568076047j)
(0.948144120608-0.124195507151j)
(-1.15062672337-0.0303554524768j)
(1.71342836304-0.0034973810374j)
(0.425120909614-0.0466252376535j)
(0.815838070076+0.00567032218644j)
r3s3
(-0.204728653523-0.0770652212807j)
(-0.239887247958-0.0825695492337j)
(-0.214408098315-0.0638810016771j)
(0.792915996552-0.190837703973j)
(1.12443529821+0.0606369062219j)
(-0.232448865638-0.0762480375094j)
(0.260266836464+0.13866206314j)
(1.54180710593-0.0523163676016j)
(0.970536907823-0.144805603398j)
(-0.237802580149-0.00572604234727j)
...
(0.402640963686-0.02172174908j)
(1.25094400433+0.013017533622j)
(-1.50153426709-0.145616537321j)
(0.418055057174+0.103958323504j)
(-0.296678124153-0.109653945176j)
(1.4713497838-0.0613489063866j)
(-0.537638774566+0.130145597662j)
(-0.475989304026-0.114262040163j)
(0.726076244451-0.0957531986279j)
(-0.132013018173-0.0619341538463j)
r3s4
(1.05103685387-0.189742584952j)
(-0.0509470053352+0.142728853561j)
(-1.79861171511+0.16745376313j)
(-0.945647204637+0.1164464946j)
(-0.760497351997+0.0301875360999j)
(1.22773767134+0.06532550402j)
(0.881494668841-0.0154188411389j)
(0.223888650066+0.104219802766j)
(-1.83339245782-0.231777846886j)
(0.426401310564+0.0241752261768j)
...
(-1.31086262875+0.0397126601754j)
(0.468717155464+0.0327314502877j)
(-0.748550410265-0.0308808654089j)
(-1.49144037642+0.00352974857982j)
(-3.18461600504-0.0270045225108j)
(0.312807130525+0.191219919879j)
(-1.97125711411-0.0765881341189j)
(-1.49054702473-0.202426634312j)
(-0.827802382667-0.00395477668367j)
(0.955755828135-0.0491122893626j)
20 rows × 400 columns
In [19]:
df3["r3s1":"r3s4"]
Out[19]:
0.0
1.23
2.46
3.69
4.92
6.15
7.38
8.61
9.84
11.07
...
479.7
480.93
482.16
483.39
484.62
485.85
487.08
488.31
489.54
490.77
r3s1
(-1.97452985187-0.00917296924165j)
(-0.044038492442-0.0533890772792j)
(0.0986571181164+0.0710607280918j)
(-1.1207128996+0.0586751903985j)
(-1.5802345318-0.0334258835107j)
(0.12135481213-0.0837061277687j)
(-0.822756383009+0.0918955806026j)
(0.262795552307-0.163477735507j)
(0.468747437275+0.107957622074j)
(-1.28757025168+0.062082210564j)
...
(0.324517453127-0.0994012120212j)
(-0.726165686889-0.0214926813727j)
(0.670027504726-0.067414825192j)
(0.672493610096+0.0259248657871j)
(1.15051072605-0.0835546880332j)
(-1.38438661204+0.0219637888629j)
(-0.00436738953142+0.0626452726052j)
(-0.250798820508+0.0744165104815j)
(1.2172410505-0.0602919040257j)
(1.20402719323+0.0942937778706j)
r3s2
(-0.733355394908+0.056188510842j)
(-0.296812258943-0.026928650419j)
(2.09901585316+0.0526436018032j)
(0.182775108299+0.115145887806j)
(-1.1379775679-0.0759761080345j)
(-1.14674798938-0.0278691624333j)
(0.239838433415+0.0632058032046j)
(-0.677137889436-0.0456090271711j)
(0.489696281226-0.0696107586012j)
(-0.205295893752+0.0645651443053j)
...
(0.927739415542+0.0779916955444j)
(0.214939857223+0.116549139614j)
(-0.379743555744+0.0572046696832j)
(-0.373751223244-0.212776530072j)
(0.308789167635-0.182568076047j)
(0.948144120608-0.124195507151j)
(-1.15062672337-0.0303554524768j)
(1.71342836304-0.0034973810374j)
(0.425120909614-0.0466252376535j)
(0.815838070076+0.00567032218644j)
r3s3
(-0.204728653523-0.0770652212807j)
(-0.239887247958-0.0825695492337j)
(-0.214408098315-0.0638810016771j)
(0.792915996552-0.190837703973j)
(1.12443529821+0.0606369062219j)
(-0.232448865638-0.0762480375094j)
(0.260266836464+0.13866206314j)
(1.54180710593-0.0523163676016j)
(0.970536907823-0.144805603398j)
(-0.237802580149-0.00572604234727j)
...
(0.402640963686-0.02172174908j)
(1.25094400433+0.013017533622j)
(-1.50153426709-0.145616537321j)
(0.418055057174+0.103958323504j)
(-0.296678124153-0.109653945176j)
(1.4713497838-0.0613489063866j)
(-0.537638774566+0.130145597662j)
(-0.475989304026-0.114262040163j)
(0.726076244451-0.0957531986279j)
(-0.132013018173-0.0619341538463j)
r3s4
(1.05103685387-0.189742584952j)
(-0.0509470053352+0.142728853561j)
(-1.79861171511+0.16745376313j)
(-0.945647204637+0.1164464946j)
(-0.760497351997+0.0301875360999j)
(1.22773767134+0.06532550402j)
(0.881494668841-0.0154188411389j)
(0.223888650066+0.104219802766j)
(-1.83339245782-0.231777846886j)
(0.426401310564+0.0241752261768j)
...
(-1.31086262875+0.0397126601754j)
(0.468717155464+0.0327314502877j)
(-0.748550410265-0.0308808654089j)
(-1.49144037642+0.00352974857982j)
(-3.18461600504-0.0270045225108j)
(0.312807130525+0.191219919879j)
(-1.97125711411-0.0765881341189j)
(-1.49054702473-0.202426634312j)
(-0.827802382667-0.00395477668367j)
(0.955755828135-0.0491122893626j)
4 rows × 400 columns
In [76]:
df4 = df3[df3.columns[4:10]]
In [75]:
onerow = df3.loc["r3s2"].apply(np.real) # take the real part to avoid issues plotting
onerow.plot()
Out[75]:
<matplotlib.axes._subplots.AxesSubplot at 0x117955cf8>
In [77]:
# can also use the regular old plot calls from matplotlib
plt.plot(np.imag(df3.loc["r3s2"]))
plt.plot(np.real(df3.loc["r3s2"]))
Out[77]:
[<matplotlib.lines.Line2D at 0x117e74208>]
In [41]:
plt.hexbin(np.real(df3.loc["r3s2"]),np.imag(df3.loc["r3s2"]))
Out[41]:
<matplotlib.collections.PolyCollection at 0x10b911160>
In [58]:
from pandas.tools.plotting import scatter_matrix
In [69]:
# take the real part or abs of the columns (save as a different dataframes)
df4real = df4.apply(np.real)
df4abs = df4.apply(np.abs)
In [72]:
# the diagonal will be the kernel density estimate (kde)
scatter_matrix(df4abs, figsize=(8, 8), diagonal='kde')
Out[72]:
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x1161151d0>,
<matplotlib.axes._subplots.AxesSubplot object at 0x11614ab38>,
<matplotlib.axes._subplots.AxesSubplot object at 0x1161957b8>,
<matplotlib.axes._subplots.AxesSubplot object at 0x1161c8c18>,
<matplotlib.axes._subplots.AxesSubplot object at 0x1163a3b70>,
<matplotlib.axes._subplots.AxesSubplot object at 0x1163e5c18>],
[<matplotlib.axes._subplots.AxesSubplot object at 0x116434748>,
<matplotlib.axes._subplots.AxesSubplot object at 0x11644aa90>,
<matplotlib.axes._subplots.AxesSubplot object at 0x1164b5f98>,
<matplotlib.axes._subplots.AxesSubplot object at 0x11662de10>,
<matplotlib.axes._subplots.AxesSubplot object at 0x116672f98>,
<matplotlib.axes._subplots.AxesSubplot object at 0x1166c2438>],
[<matplotlib.axes._subplots.AxesSubplot object at 0x1166fa908>,
<matplotlib.axes._subplots.AxesSubplot object at 0x11674c1d0>,
<matplotlib.axes._subplots.AxesSubplot object at 0x1167103c8>,
<matplotlib.axes._subplots.AxesSubplot object at 0x1167d10b8>,
<matplotlib.axes._subplots.AxesSubplot object at 0x11691a320>,
<matplotlib.axes._subplots.AxesSubplot object at 0x1169595f8>],
[<matplotlib.axes._subplots.AxesSubplot object at 0x1169ab048>,
<matplotlib.axes._subplots.AxesSubplot object at 0x1169e19b0>,
<matplotlib.axes._subplots.AxesSubplot object at 0x116a28908>,
<matplotlib.axes._subplots.AxesSubplot object at 0x116a68a20>,
<matplotlib.axes._subplots.AxesSubplot object at 0x116ab7470>,
<matplotlib.axes._subplots.AxesSubplot object at 0x116aca940>],
[<matplotlib.axes._subplots.AxesSubplot object at 0x116c3cdd8>,
<matplotlib.axes._subplots.AxesSubplot object at 0x116c8a908>,
<matplotlib.axes._subplots.AxesSubplot object at 0x116cca710>,
<matplotlib.axes._subplots.AxesSubplot object at 0x116d15c50>,
<matplotlib.axes._subplots.AxesSubplot object at 0x116d52470>,
<matplotlib.axes._subplots.AxesSubplot object at 0x116d9f198>],
[<matplotlib.axes._subplots.AxesSubplot object at 0x116d68828>,
<matplotlib.axes._subplots.AxesSubplot object at 0x116e21ef0>,
<matplotlib.axes._subplots.AxesSubplot object at 0x116e6df60>,
<matplotlib.axes._subplots.AxesSubplot object at 0x116eb3080>,
<matplotlib.axes._subplots.AxesSubplot object at 0x116efba90>,
<matplotlib.axes._subplots.AxesSubplot object at 0x1161af6a0>]], dtype=object)
In [1]:
# Format the notebook using style by Lorena Barba (http://lorenabarba.com/)
# run this cell first to use the nice format.
from IPython.core.display import HTML
def css_styling():
styles = open("./styles/custom.css", "r").read()
return HTML(styles)
css_styling()
Out[1]:
In [ ]:
Content source: DawesLab/LabNotebooks
Similar notebooks: