In [1]:
import numpy
In [2]:
import ipywidgets as widgets
from IPython.display import display
In [3]:
import matplotlib.pyplot as plt
%matplotlib notebook
In [4]:
x = [1,2,3]
y = numpy.array([2,5,4])
fig = plt.figure()
ax = fig.add_subplot(111)
line1, = ax.plot(x, y, 'r-')
In [5]:
slider = widgets.FloatSlider(min=0.0,max=10.0,value=5.0,description="Value:")
display(slider)
In [6]:
def on_value_change(change):
line1.set_ydata(y*(10/change['new']))
fig.canvas.draw()
slider.observe(on_value_change, names='value')
In [11]:
line1.set_ydata(numpy.array([2,1,3]))
fig.canvas.draw()
In [10]:
line1.get_ydata()
Out[10]:
In [ ]: