In [1]:
import numpy

In [2]:
import ipywidgets as widgets
from IPython.display import display

In [3]:
import matplotlib.pyplot as plt
%matplotlib notebook

In [4]:
x = [1,2,3]
y = numpy.array([2,5,4])
fig = plt.figure()
ax = fig.add_subplot(111)
line1, = ax.plot(x, y, 'r-')



In [5]:
slider = widgets.FloatSlider(min=0.0,max=10.0,value=5.0,description="Value:")
display(slider)



In [6]:
def on_value_change(change):
    line1.set_ydata(y*(10/change['new']))
    fig.canvas.draw()

slider.observe(on_value_change, names='value')

In [11]:
line1.set_ydata(numpy.array([2,1,3]))
fig.canvas.draw()

In [10]:
line1.get_ydata()


Out[10]:
array([2.7027027 , 6.75675676, 5.40540541])

In [ ]: