In [1]:
%matplotlib inline

In [2]:
from os import walk, path
import numpy as np
import mahotas as mh
from sklearn.cross_validation import train_test_split
from sklearn.cross_validation import cross_val_score
from sklearn.preprocessing import scale
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report

In [3]:
X = []
y = []

In [4]:
for dir_path, dir_name, file_names in walk('./data/att_faces/'):
    for fn in file_names:
        if fn[-3:] == 'pgm':
            image_filename = path.join(dir_path, fn)
            print image_filename
            X.append(scale(mh.imread(image_filename, as_grey=True).reshape(10304).astype('float32')))
            y.append(dir_path)
X = np.array(X)


./data/att_faces/s1/1.pgm
---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
<ipython-input-4-dea67d6c51ba> in <module>()
      4             image_filename = path.join(dir_path, fn)
      5             print image_filename
----> 6             X.append(scale(mh.imread(image_filename, as_grey=True).reshape(10304).astype('float32')))
      7             y.append(dir_path)
      8 X = np.array(X)

/usr/local/lib/python2.7/site-packages/imread/imread.pyc in imread(filename, as_grey, formatstr, return_metadata)
     65     reader = special.get(formatstr, _imread.imread)
     66     flags = ('m' if return_metadata else '')
---> 67     imdata,meta = reader(filename, formatstr, flags)
     68     imdata = _as_grey(imdata, as_grey)
     69     if return_metadata:

RuntimeError: This format (pgm) is unknown to imread

In [9]:
X


Out[9]:
[]

In [ ]: