In [7]:
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.cross_validation import train_test_split
from sklearn.metrics import classification_report
from sklearn.pipeline import Pipeline
from sklearn.grid_search import GridSearchCV
In [8]:
df = pd.read_csv('./data/ad-dataset/ad.data', header=None)
explanatory_variable_columns = set(df.columns.values)
response_variable_column = df[len(df.columns.values)-1]
explanatory_variable_columns.remove(len(df.columns.values)-1)
y = [1 if e == 'ad.' else 0 for e in response_variable_column]
X = df[list(explanatory_variable_columns)]
X.replace(to_replace=' *\?', value=-1, regex=True, inplace=True)
In [9]:
X_train, X_test, y_train, y_test = train_test_split(X, y)
In [10]:
pipeline = Pipeline([
('clf', DecisionTreeClassifier(criterion='entropy'))
])
parameters = {
'clf__max_depth': (150, 155, 160),
'clf__min_samples_split': (1,2,3),
'clf__min_samples_leaf': (1,2,3)
}
grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1, verbose=1, scoring='f1')
grid_search.fit(X_train, y_train)
print 'Best score: %0.3f' % grid_search.best_score_
print 'Best parameters set:'
best_parameters = grid_search.best_estimator_.get_params()
for param_name in sorted(parameters.keys()):
print '\t%s: %r' % (param_name, best_parameters[param_name])
predictions = grid_search.predict(X_test)
print classification_report(y_test, predictions)
In [ ]: