In [1]:
# Using a helper function to do Cross Validation automatically.
# Similar to how other sklearn objects are wrapped in helpers like
# pipelines.

In [2]:
from sklearn import ensemble
rf = ensemble.RandomForestRegressor(max_features='auto')

In [3]:
from sklearn import datasets
X, y = datasets.make_regression(10000, 10)

In [4]:
from sklearn import cross_validation

In [5]:
scores = cross_validation.cross_val_score(rf, X, y)

In [6]:
print scores


[ 0.84909057  0.84418761  0.85055925]

In [7]:
scores = cross_validation.cross_val_score(rf, X, y, verbose=3,
                                          cv=4)


[CV] no parameters to be set .........................................
[CV] ................ no parameters to be set, score=0.845672 -   0.6s
[CV] no parameters to be set .........................................
[CV] ................ no parameters to be set, score=0.852102 -   0.6s
[CV] no parameters to be set .........................................
[CV] ................ no parameters to be set, score=0.845743 -   0.6s
[CV] no parameters to be set .........................................
[CV] ................ no parameters to be set, score=0.846676 -   0.6s
[Parallel(n_jobs=1)]: Done   1 jobs       | elapsed:    0.6s
[Parallel(n_jobs=1)]: Done   4 out of   4 | elapsed:    2.4s finished


In [ ]: