In [1]:
%matplotlib inline

In [2]:
# QDA is the generalization of a common technique such as
# quadratic regression. It is simply a generalization of the
# model to allow for more complex models to fit.

In [3]:
# Quadratic Discernment Analysis (QDA)

In [4]:
from sklearn.qda import QDA
qda = QDA()

In [12]:
from sklearn.datasets import make_classification

In [19]:
X, y = make_classification(n_samples=10000,
                       n_features=100,
                       n_informative=10)

In [22]:
qda.fit(X, y)


Out[22]:
QDA(priors=None, reg_param=0.0)

In [24]:
predictions = qda.predict(X)

In [25]:
predictions.sum()


Out[25]:
5094

In [26]:
from sklearn.metrics import classification_report

In [28]:
print classification_report(predictions, y)


             precision    recall  f1-score   support

          0       0.93      0.94      0.94      4906
          1       0.95      0.93      0.94      5094

avg / total       0.94      0.94      0.94     10000


In [40]:
from sklearn import cross_validation as cv
import numpy as np
import pandas as pd

In [30]:
import scipy.stats as sp

In [45]:
x_df = pd.DataFrame(X)
for test, train in cv.ShuffleSplit(len(X), n_iter=1):
    train_set = X[train]

In [41]:



Out[41]:
0 1 2 3 4 5 6 7 8 9 ... 90 91 92 93 94 95 96 97 98 99
0 -0.029731 -0.847192 -0.873842 -2.736911 0.286616 -0.441551 0.364178 -1.869194 0.064778 0.011345 ... -1.219402 -0.944565 -0.931613 -1.830888 -0.130544 -0.265180 1.245819 0.495641 0.756591 -0.973696
1 0.358557 -0.098651 -4.223222 -1.401820 -0.649522 -0.206962 0.000156 -0.755784 1.091975 -0.102920 ... -0.280906 -1.748983 -1.534380 2.180207 2.101923 -1.776869 0.477080 -0.150732 0.917310 0.230279
2 -1.015557 0.691510 0.391236 0.040811 -0.558113 -0.403750 0.903736 -0.609054 0.149992 -0.058775 ... 1.689914 -0.940325 -1.221164 -0.600485 -0.802244 0.797201 -1.299036 0.674687 -1.030610 -1.219872
3 -0.994823 1.703330 -0.788696 0.671760 1.448712 0.636642 -1.241240 1.263012 0.530625 2.061466 ... -0.253964 0.628526 -2.155997 -4.166509 0.526818 2.272056 -0.423455 -0.671647 0.843183 1.692206
4 -0.976121 -0.653973 -3.140539 -0.465602 -1.242434 1.389481 0.964224 -0.875514 -0.053421 -2.496131 ... 0.200530 -0.599930 0.987714 1.644272 2.257994 -0.973883 1.475636 0.562442 0.749954 0.316075
5 -1.507700 0.786809 1.851140 0.297233 0.588356 0.739472 2.061298 -0.972863 0.098893 0.788181 ... -0.583373 0.417360 -0.477055 -0.361363 -0.786730 -1.280425 0.921082 1.511995 -1.351497 0.013340
6 1.047073 0.811215 0.558251 1.645739 -0.734104 1.752834 -1.811638 -1.916852 -0.811009 0.208781 ... 0.797688 0.275766 -0.252539 -3.939008 0.893329 -0.347741 0.426780 0.054562 0.783150 0.676937
7 2.697403 -0.400964 -5.858382 -1.501036 0.542886 -0.398245 0.078670 -0.271301 -0.454082 -2.592795 ... -0.899939 0.373750 0.496770 8.128774 -0.023513 0.562909 0.376413 0.227157 -1.031000 1.757819
8 1.229227 -2.120103 1.707771 -0.529443 0.176001 -0.230843 -0.332694 0.630396 -0.261298 -0.125649 ... 0.344844 0.143297 0.550881 -3.676537 2.148478 -0.773782 -1.135889 0.395414 -1.034918 -1.788996
9 0.762679 0.466084 1.329287 1.092905 0.963000 -0.721024 1.393276 -1.144815 2.093864 -0.673510 ... -0.767067 -1.586646 0.210299 -2.489520 -0.005303 -0.459988 -0.831074 -0.075556 0.868297 0.593628
10 -0.068193 0.651683 4.004219 -0.169967 1.391652 -1.388772 0.178383 0.624709 1.038303 3.937515 ... 0.501538 1.500165 -0.535357 -3.134668 1.409551 0.622468 -0.277969 0.921892 0.254314 0.687195
11 0.159952 -1.662235 0.660776 -0.235471 -0.069844 -0.861415 -0.494649 0.130406 1.650684 -5.594358 ... -0.695028 -0.420676 -0.737194 0.213267 -1.263328 -0.474050 -1.183897 0.861521 -0.209121 1.332501
12 -0.674347 1.324654 1.972810 -0.201110 1.646813 0.681287 -1.439773 0.611816 0.635068 -3.647649 ... -1.280178 -1.420078 0.412977 -3.026223 0.069915 -0.706641 1.298894 0.590266 1.138299 -1.635143
13 0.380170 -0.486228 0.844386 -1.829547 1.688942 -1.062060 0.215876 1.419746 -0.389458 -2.477988 ... -1.554509 -1.354531 -0.438409 -4.256317 -0.466175 -1.706849 0.072866 1.579501 -1.313678 0.313391
14 -0.038826 -2.082990 3.539534 2.507229 -2.368330 0.055737 0.514083 -0.741718 -0.255335 2.250122 ... 0.130936 -1.496341 0.916336 0.945526 -0.698179 0.761593 -1.971913 0.207810 -1.471172 -0.308372
15 -2.117219 -0.402796 5.534472 -0.109373 2.175173 -0.050925 -3.133356 0.036844 1.079118 0.572036 ... -0.386014 -1.360646 1.178270 -4.570329 -0.594766 -0.029217 -1.923991 -1.810541 1.134374 -0.523125
16 1.088363 -0.658444 0.999155 -0.122305 -0.171075 -0.409426 -1.146514 -0.445966 0.673450 -1.688613 ... -0.735780 0.660245 0.358289 2.975102 1.727153 0.076019 -1.090877 1.118841 -0.805657 -0.195268
17 1.366141 -0.091120 -2.116636 -0.356594 0.964254 -1.074078 1.820373 1.207181 0.755103 -1.403163 ... -0.362552 -0.844498 -0.442189 1.711344 -0.385993 -0.419950 0.268023 -0.405948 0.390242 0.183004
18 -0.074656 0.589844 -1.771163 -0.652104 0.481818 1.844762 1.056081 1.169608 0.936947 -1.714196 ... 0.549229 0.409080 -0.185490 3.940166 -0.816903 0.556344 0.495143 -0.472464 -0.561600 -0.078110
19 -1.039865 -0.715399 -2.228633 1.325214 -1.264170 -0.116452 0.541280 0.957924 1.545055 -4.335957 ... -0.827112 -1.816191 1.167327 2.521280 0.988747 1.221902 -1.568060 0.922554 -0.587471 -0.001142
20 1.183736 0.176642 -0.216673 -1.300905 -1.212440 0.015892 -1.138034 1.337699 -0.498488 -2.076148 ... 1.097397 0.167451 1.391500 1.146722 0.370404 0.810025 -0.842603 1.414265 0.399134 -0.635064
21 -0.208360 1.563648 0.809366 0.595526 1.129052 0.140704 -1.354059 1.366409 0.212184 -4.737417 ... -1.302222 -0.389513 -0.865069 -4.406874 1.295691 0.032085 0.325894 0.400724 -0.654676 -0.138129
22 1.671007 0.327147 1.049743 -1.854792 0.338885 -0.818275 0.320622 -1.474363 1.068101 -3.577684 ... 1.253448 -0.727815 -0.343536 3.342653 -0.463067 0.599355 -0.548290 -1.160428 0.200043 0.554937
23 -0.635672 0.388086 -1.032169 -1.586190 0.603257 -1.032336 1.106085 1.279057 -0.446866 0.184352 ... 0.779673 0.218232 0.036858 2.129715 1.260475 0.237634 -1.214540 1.611409 -1.211718 0.266691
24 -1.644366 -0.230155 -0.960808 0.106302 -1.243312 -1.560365 0.192659 -0.451615 1.524803 -2.271091 ... -0.812403 0.550510 -0.755559 1.228622 -0.339574 -0.705411 2.368382 -0.398646 -1.197692 1.005175
25 0.495991 1.308194 -1.408720 0.033352 -2.326115 -1.682241 -2.254124 -1.149721 1.795161 -1.983192 ... 0.841477 1.284005 -0.792947 -2.764737 -0.952753 1.076271 0.363618 0.941713 -0.618663 -2.448937
26 -0.824098 -0.472379 1.010761 -0.419848 -0.612878 0.320495 0.185957 -0.409846 -0.444329 -2.829233 ... -1.206606 1.167326 -0.149360 3.291699 -0.103498 0.704163 -0.173533 0.401347 -1.850873 -1.822087
27 0.168513 -1.113519 -1.960954 -0.188879 -0.051986 -0.169913 -1.115974 1.988467 -0.296040 -0.017193 ... 0.422459 -1.131402 -0.262483 2.907635 0.445281 -0.357538 1.783510 -1.001097 0.837530 1.633580
28 1.131700 0.988025 0.679986 -0.598797 2.026764 0.098592 -1.800593 1.098152 1.166097 -1.538437 ... -0.407852 1.554440 -0.706432 0.035383 0.726648 -0.231967 -0.607720 0.851863 0.800663 -1.376194
29 1.348546 -0.420851 -1.221063 0.950869 -0.735642 1.617901 0.940127 0.032940 0.592536 -6.592235 ... 0.809454 -2.393070 1.141512 1.078451 0.062747 -0.545904 -0.335241 1.540575 -0.531553 -0.041196
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
9970 -1.348368 -1.811042 -2.564047 0.051619 0.047061 0.792911 0.003478 0.309010 -0.468932 -1.578374 ... 0.299210 -1.527251 -0.864700 3.849818 0.242475 -0.285815 0.623803 -0.701802 -0.061619 0.322847
9971 0.344603 -1.967080 0.184554 -0.547733 0.176685 0.718032 1.811586 -0.561281 0.230321 -0.597403 ... -0.975838 0.024069 2.356947 -6.200896 -0.888061 -1.598575 3.565565 -2.691621 0.838041 -1.292151
9972 0.669354 -1.124825 0.827160 0.156838 0.339856 1.309463 -0.551700 1.144470 -0.579243 0.991790 ... 0.067783 -0.806343 0.840856 -0.451641 2.162428 -0.001998 0.867866 -0.315708 -0.134385 -0.952690
9973 -0.264787 0.843662 -1.593233 1.085341 -0.507862 -0.311325 0.566541 -0.269820 -0.236367 -1.484873 ... -1.072239 0.311681 0.824938 1.219872 -0.775247 -0.259329 0.617821 -1.890111 0.857375 -1.119785
9974 0.247375 -1.239675 0.265214 -0.865333 0.437970 0.260063 -1.581726 -0.719044 -0.108659 -3.769965 ... 0.650028 -0.528284 -0.570918 -2.133547 2.137681 2.753332 1.176501 -0.850534 -0.234365 0.500547
9975 0.354719 -1.257097 -1.002634 0.399107 -0.346706 2.242094 0.053637 -0.126519 0.183832 0.555265 ... -0.701172 1.004699 -0.769248 0.488386 0.229571 0.582403 -1.314494 -0.429709 0.072235 1.849275
9976 0.696407 -0.263707 -0.234115 -0.489264 0.053662 0.063167 -0.638506 1.266974 1.591918 -5.832016 ... -0.925978 0.077408 1.763490 3.017062 -0.485129 0.532567 -0.267859 -1.061942 0.195941 0.107160
9977 -1.479632 -0.379073 1.686911 1.087418 1.212539 1.873674 1.129906 0.821135 -0.216305 -3.539324 ... -0.378575 -1.208835 2.374678 -1.033645 0.338844 -0.843293 -0.432735 0.847734 0.537616 0.955572
9978 0.664232 0.941914 -0.440059 -0.641470 1.913784 0.246894 -0.865157 0.634794 1.452272 -0.187226 ... 0.017012 -0.114962 -0.825884 1.370367 1.149418 -0.921436 -0.020510 1.535296 1.280864 1.291527
9979 -0.430155 -0.718919 -3.063069 -1.736670 -0.230641 -1.058155 0.378665 -0.280816 -0.641239 -0.819870 ... -0.739360 -0.427666 -0.577165 0.437182 0.871043 -0.637490 -1.775981 0.465387 -0.383754 0.758754
9980 0.530341 -1.285649 -0.082483 0.837473 -2.369276 2.046962 -0.271232 -0.160900 0.043063 2.362495 ... -0.622233 -0.782748 0.839812 -3.804970 -3.181424 1.034115 0.788314 1.623870 1.721041 -0.381341
9981 0.467975 1.452181 -2.529573 -0.395509 0.540899 -0.738470 1.384465 -1.082482 -1.761737 -4.532512 ... -0.731471 0.844056 1.809872 -1.122749 0.785599 -2.158055 0.277828 -0.934270 0.300013 0.184163
9982 -0.756988 -1.111999 0.681556 0.316391 -1.225683 -0.271512 1.575272 -0.276608 -1.747696 -0.813972 ... 0.151832 -0.949069 0.504539 1.653153 -1.948001 -0.470795 0.644035 0.431839 -0.252996 -1.033531
9983 -1.034424 0.155145 2.804196 0.356332 -0.129076 -0.740974 -0.305992 1.582715 -0.967163 -2.122910 ... -1.602132 0.437381 -1.355101 0.843250 0.086232 0.571653 1.239422 -0.612128 0.263713 0.541554
9984 1.130267 2.229259 -2.667016 0.138240 1.459557 0.079692 0.087562 1.305658 -0.570856 0.105934 ... 1.062905 0.021563 0.097046 -2.891232 -0.501178 1.423278 0.166561 0.683761 -1.038992 -0.434941
9985 -0.164855 0.254547 0.578295 0.920283 -0.086137 -0.478881 0.735792 -0.383007 0.436214 -3.510700 ... -2.240535 0.708686 0.264430 0.951096 0.327674 -1.098992 -0.948294 -0.055148 0.564003 1.862201
9986 -1.158562 0.490125 -1.295693 0.275877 0.286086 2.059452 0.623245 -0.012396 0.029973 1.696271 ... -0.214701 1.213529 0.611307 -2.171035 -0.291468 -1.441409 -2.053680 0.654400 0.602778 1.078340
9987 -1.059552 1.146661 0.716325 0.701738 -0.756997 0.890639 -0.572854 0.833113 -0.623431 -2.318074 ... -0.079565 -3.580874 -1.416529 1.120172 -0.970209 1.923302 -2.126922 -2.195978 -0.839018 0.357027
9988 1.141268 0.228933 0.648582 -1.606548 0.632864 0.602126 -0.511527 -0.757567 1.733337 -1.418525 ... 1.521491 -0.522033 0.004885 2.372377 -0.930627 -1.394671 -1.364334 -0.562369 -0.646230 2.356345
9989 -0.572725 0.008365 -3.509249 0.131432 0.933898 -0.321170 0.932592 -1.253321 -1.226422 -2.343918 ... 0.023082 -0.579146 0.242502 1.071177 0.584907 -0.677266 -0.632469 -0.346682 -0.046670 -0.819884
9990 -0.354974 -0.287108 1.217755 0.745428 0.096785 1.063464 -1.146677 -0.380798 -1.885065 -0.770388 ... -0.909279 -1.101533 1.592096 -1.097892 0.775202 -0.149394 -0.711015 1.366184 0.709490 1.477855
9991 0.833848 -0.586294 5.144486 -0.658233 -1.110437 -0.328922 -1.550376 -0.920964 -1.192983 -1.460017 ... -0.544031 -0.372084 -1.094604 0.220894 -1.300560 1.058376 0.025612 -0.243930 1.114478 1.462910
9992 0.044315 -0.781306 -2.808784 0.238224 0.214188 1.296244 -0.654357 0.116672 -0.468204 -1.428638 ... -0.337267 -0.326048 -1.223571 2.968784 -0.702469 -0.358093 0.269296 -2.044638 -0.358677 -0.337527
9993 -1.426773 0.095127 -3.236328 0.700160 1.591741 0.803906 2.156824 1.870932 0.056790 -2.283673 ... -1.487476 0.676359 0.755307 2.523567 0.904475 -1.224272 -0.413462 -1.113776 -0.685040 0.563396
9994 0.267921 0.086846 -1.846748 0.419277 -2.141475 2.011866 3.269459 1.161047 -1.593042 -3.653736 ... 0.187143 -0.843692 0.701080 5.067569 -2.355226 1.174799 -0.953863 -1.391154 0.783318 -0.908785
9995 -1.652496 0.177236 -1.893766 1.062545 0.066258 -0.918413 -1.384952 -0.232552 1.043724 0.188231 ... 0.975948 -0.691912 0.140237 -2.746287 -0.973346 0.666872 0.736769 -1.892920 -1.064195 -0.016803
9996 -0.310911 0.703429 1.869286 0.052484 1.471296 -0.161123 -0.716003 0.667835 0.034717 -0.893716 ... -0.655953 0.825110 -0.645264 3.490295 -0.873823 -1.234205 -0.761866 -0.542020 -0.115574 -0.121501
9997 0.048394 -1.006846 -0.039394 -1.154446 0.881864 -0.359637 0.635959 0.884503 -0.200608 -1.034501 ... -0.156998 0.304503 0.055928 -3.332354 0.199393 -1.215674 1.260680 -1.149573 0.537921 0.068987
9998 1.901172 -0.749259 -3.150884 1.229777 -2.052965 1.707686 1.430779 0.827893 -0.401705 -1.206147 ... 0.569899 -1.204859 -2.490858 1.506209 0.867509 -1.131798 0.974178 -0.033094 0.686176 0.048266
9999 1.693606 0.057426 -2.518763 0.979128 -0.283243 0.841618 0.337333 1.403836 -1.152722 1.261013 ... -0.029820 -0.743832 -0.565009 -2.298214 0.009583 -1.361146 1.004878 0.879420 -0.957282 -0.474842

10000 rows × 100 columns


In [ ]: