In [1]:
%matplotlib inline
In [2]:
import matplotlib.pyplot as plt
In [3]:
from sklearn.datasets import make_regression
In [35]:
X, y = make_regression(100, 2, noise=10)
In [36]:
X[:5]
Out[36]:
In [37]:
f, ax = plt.subplots(figsize=(7,5))
f.tight_layout()
ax.scatter(X[:, 0], X[:, 1], color='r', label='random values')
ax.set_title('random values')
ax.legend(loc='best')
Out[37]:
In [ ]: