Help on multivariate_normal_gen in module scipy.stats._multivariate object:
class multivariate_normal_gen(__builtin__.object)
| A multivariate normal random variable.
|
| The `mean` keyword specifies the mean. The `cov` keyword specifies the
| covariance matrix.
|
| Methods
| -------
| pdf(x, mean=None, cov=1, allow_singular=False)
| Probability density function.
| logpdf(x, mean=None, cov=1, allow_singular=False)
| Log of the probability density function.
| rvs(mean=None, cov=1, allow_singular=False, size=1)
| Draw random samples from a multivariate normal distribution.
| entropy()
| Compute the differential entropy of the multivariate normal.
|
| Parameters
| ----------
| x : array_like
| Quantiles, with the last axis of `x` denoting the components.
| %(_doc_default_callparams)s
|
| Alternatively, the object may be called (as a function) to fix the mean
| and covariance parameters, returning a "frozen" multivariate normal
| random variable:
|
| rv = multivariate_normal(mean=None, cov=1, allow_singular=False)
| - Frozen object with the same methods but holding the given
| mean and covariance fixed.
|
| Notes
| -----
| %(_doc_callparams_note)s
|
| The covariance matrix `cov` must be a (symmetric) positive
| semi-definite matrix. The determinant and inverse of `cov` are computed
| as the pseudo-determinant and pseudo-inverse, respectively, so
| that `cov` does not need to have full rank.
|
| The probability density function for `multivariate_normal` is
|
| .. math::
|
| f(x) = \frac{1}{\sqrt{(2 \pi)^k \det \Sigma}} \exp\left( -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right),
|
| where :math:`\mu` is the mean, :math:`\Sigma` the covariance matrix,
| and :math:`k` is the dimension of the space where :math:`x` takes values.
|
| .. versionadded:: 0.14.0
|
| Examples
| --------
| >>> import matplotlib.pyplot as plt
| >>> from scipy.stats import multivariate_normal
| >>> x = np.linspace(0, 5, 10, endpoint=False)
| >>> y = multivariate_normal.pdf(x, mean=2.5, cov=0.5); y
| array([ 0.00108914, 0.01033349, 0.05946514, 0.20755375, 0.43939129,
| 0.56418958, 0.43939129, 0.20755375, 0.05946514, 0.01033349])
| >>> plt.plot(x, y)
|
| The input quantiles can be any shape of array, as long as the last
| axis labels the components. This allows us for instance to
| display the frozen pdf for a non-isotropic random variable in 2D as
| follows:
|
| >>> x, y = np.mgrid[-1:1:.01, -1:1:.01]
| >>> pos = np.empty(x.shape + (2,))
| >>> pos[:, :, 0] = x; pos[:, :, 1] = y
| >>> rv = multivariate_normal([0.5, -0.2], [[2.0, 0.3], [0.3, 0.5]])
| >>> plt.contourf(x, y, rv.pdf(pos))
|
| Methods defined here:
|
| __call__(self, mean=None, cov=1, allow_singular=False)
| Create a frozen multivariate normal distribution.
|
| See `multivariate_normal_frozen` for more information.
|
| __init__(self)
|
| entropy(self, mean=None, cov=1)
| Compute the differential entropy of the multivariate normal.
|
| Parameters
| ----------
| %(_doc_default_callparams)s
|
| Notes
| -----
| %(_doc_callparams_note)s
|
| Returns
| -------
| h : scalar
| Entropy of the multivariate normal distribution
|
| logpdf(self, x, mean, cov, allow_singular=False)
| Log of the multivariate normal probability density function.
|
| Parameters
| ----------
| x : array_like
| Quantiles, with the last axis of `x` denoting the components.
| mean : array_like, optional
| Mean of the distribution (default zero)
| cov : array_like, optional
| Covariance matrix of the distribution (default one)
| allow_singular : bool, optional
| Whether to allow a singular covariance matrix. (Default: False)
|
| Notes
| -----
| Setting the parameter `mean` to `None` is equivalent to having `mean`
| be the zero-vector. The parameter `cov` can be a scalar, in which case
| the covariance matrix is the identity times that value, a vector of
| diagonal entries for the covariance matrix, or a two-dimensional
| array_like.
|
|
| Returns
| -------
| pdf : ndarray
| Log of the probability density function evaluated at `x`
|
| pdf(self, x, mean, cov, allow_singular=False)
| Multivariate normal probability density function.
|
| Parameters
| ----------
| x : array_like
| Quantiles, with the last axis of `x` denoting the components.
| mean : array_like, optional
| Mean of the distribution (default zero)
| cov : array_like, optional
| Covariance matrix of the distribution (default one)
| allow_singular : bool, optional
| Whether to allow a singular covariance matrix. (Default: False)
|
| Notes
| -----
| Setting the parameter `mean` to `None` is equivalent to having `mean`
| be the zero-vector. The parameter `cov` can be a scalar, in which case
| the covariance matrix is the identity times that value, a vector of
| diagonal entries for the covariance matrix, or a two-dimensional
| array_like.
|
|
| Returns
| -------
| pdf : ndarray
| Probability density function evaluated at `x`
|
| rvs(self, mean=None, cov=1, size=1)
| Draw random samples from a multivariate normal distribution.
|
| Parameters
| ----------
| mean : array_like, optional
| Mean of the distribution (default zero)
| cov : array_like, optional
| Covariance matrix of the distribution (default one)
| allow_singular : bool, optional
| Whether to allow a singular covariance matrix. (Default: False)
| size : integer, optional
| Number of samples to draw (default 1).
|
| Notes
| -----
| Setting the parameter `mean` to `None` is equivalent to having `mean`
| be the zero-vector. The parameter `cov` can be a scalar, in which case
| the covariance matrix is the identity times that value, a vector of
| diagonal entries for the covariance matrix, or a two-dimensional
| array_like.
|
|
| Returns
| -------
| rvs : ndarray or scalar
| Random variates of size (`size`, `N`), where `N` is the
| dimension of the random variable.
|
| ----------------------------------------------------------------------
| Data descriptors defined here:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)