In [4]:
import pandas as pd
# conda install pandas-datareader
from pandas_datareader import data, wb

In [19]:
pd.datetime(2016, 4, 27)


Out[19]:
datetime.datetime(2016, 4, 27, 0, 0)

In [28]:
aapl.loc[pd.date_range(start="01/01/1990", end="01/01/2000")]


Out[28]:
Open High Low Close Volume Adj Close
1990-01-01 NaN NaN NaN NaN NaN NaN
1990-01-02 35.249999 37.500000 35.000000 37.250001 45799600.0 1.151017
1990-01-03 37.999999 37.999999 37.500000 37.500000 51998800.0 1.158742
1990-01-04 38.250001 38.749999 37.250001 37.625000 55378400.0 1.162604
1990-01-05 37.750000 38.250001 36.999999 37.750000 30828000.0 1.166467
1990-01-06 NaN NaN NaN NaN NaN NaN
1990-01-07 NaN NaN NaN NaN NaN NaN
1990-01-08 37.500000 37.999999 36.999999 37.999999 25393200.0 1.174191
1990-01-09 37.999999 37.999999 36.999999 37.625000 21534800.0 1.162604
1990-01-10 37.625000 37.625000 35.750000 36.000000 49929600.0 1.112392
1990-01-11 36.249999 36.249999 34.499999 34.499999 52763200.0 1.066042
1990-01-12 34.250000 34.750001 33.750001 34.499999 42974400.0 1.066042
1990-01-13 NaN NaN NaN NaN NaN NaN
1990-01-14 NaN NaN NaN NaN NaN NaN
1990-01-15 34.499999 35.750000 34.250000 34.250000 40434800.0 1.058317
1990-01-16 33.499999 35.000000 32.749999 34.875000 53561200.0 1.077630
1990-01-17 34.750001 34.750001 33.000001 33.250000 49324800.0 1.027418
1990-01-18 33.000001 33.499999 32.250000 32.375000 68322800.0 1.000380
1990-01-19 33.750001 34.499999 33.499999 34.250000 66284400.0 1.058317
1990-01-20 NaN NaN NaN NaN NaN NaN
1990-01-21 NaN NaN NaN NaN NaN NaN
1990-01-22 34.000000 34.499999 33.250000 33.250000 36402800.0 1.027418
1990-01-23 33.750001 34.250000 33.000001 33.750001 35218400.0 1.042867
1990-01-24 32.500000 34.250000 32.250000 34.000000 42448000.0 1.050592
1990-01-25 34.250000 34.750001 34.000000 34.125000 27885200.0 1.054455
1990-01-26 34.000000 34.000000 32.250000 32.749999 45312400.0 1.011968
1990-01-27 NaN NaN NaN NaN NaN NaN
1990-01-28 NaN NaN NaN NaN NaN NaN
1990-01-29 33.000001 33.499999 32.125001 33.250000 29982400.0 1.027418
1990-01-30 33.250000 34.499999 33.000001 34.000000 29111600.0 1.050592
... ... ... ... ... ... ...
1999-12-03 112.187494 115.562498 111.874997 115.000002 161980000.0 3.803581
1999-12-04 NaN NaN NaN NaN NaN NaN
1999-12-05 NaN NaN NaN NaN NaN NaN
1999-12-06 114.562502 117.312498 111.437497 115.999998 116695600.0 3.836656
1999-12-07 116.562494 118.000004 114.000006 117.812496 111255200.0 3.896603
1999-12-08 116.250004 117.874994 109.500003 110.062499 103087600.0 3.640275
1999-12-09 110.999997 110.999997 100.874999 105.249999 213799600.0 3.481103
1999-12-10 105.312497 109.249997 99.000003 103.000001 159440400.0 3.406686
1999-12-11 NaN NaN NaN NaN NaN NaN
1999-12-12 NaN NaN NaN NaN NaN NaN
1999-12-13 102.390601 102.500003 98.937498 99.000003 132490400.0 3.274387
1999-12-14 98.375002 99.750000 94.749999 94.875002 108967600.0 3.137954
1999-12-15 93.249998 97.250003 91.062498 96.999997 155744400.0 3.208238
1999-12-16 98.000000 98.375002 94.000002 98.312497 115956400.0 3.251648
1999-12-17 100.874999 101.999998 98.499998 99.999999 123751600.0 3.307462
1999-12-18 NaN NaN NaN NaN NaN NaN
1999-12-19 NaN NaN NaN NaN NaN NaN
1999-12-20 99.562499 99.624997 96.625002 98.000000 70996800.0 3.241313
1999-12-21 98.187501 103.062499 97.937502 102.500003 76899200.0 3.390148
1999-12-22 102.874998 104.562500 98.749997 99.937501 81768400.0 3.305395
1999-12-23 101.812497 104.250003 101.062500 103.499999 57383200.0 3.423223
1999-12-24 NaN NaN NaN NaN NaN NaN
1999-12-25 NaN NaN NaN NaN NaN NaN
1999-12-26 NaN NaN NaN NaN NaN NaN
1999-12-27 104.374999 104.437497 99.250002 99.312500 42098000.0 3.284723
1999-12-28 99.124999 99.624997 94.999998 98.187501 61894000.0 3.247514
1999-12-29 96.812503 102.187499 95.500003 100.687498 71125600.0 3.330200
1999-12-30 102.187499 104.125000 99.624997 100.312503 51786000.0 3.317798
1999-12-31 100.937497 102.874998 99.500001 102.812500 40952800.0 3.400484
2000-01-01 NaN NaN NaN NaN NaN NaN

3653 rows × 6 columns


In [24]:
aapl = data.DataReader("AAPL", "yahoo", start="01/01/1990", end="01/01/2016")

In [29]:
aapl.head()


Out[29]:
Open High Low Close Volume Adj Close
Date
1990-01-02 35.249999 37.500000 35.000000 37.250001 45799600 1.151017
1990-01-03 37.999999 37.999999 37.500000 37.500000 51998800 1.158742
1990-01-04 38.250001 38.749999 37.250001 37.625000 55378400 1.162604
1990-01-05 37.750000 38.250001 36.999999 37.750000 30828000 1.166467
1990-01-08 37.500000 37.999999 36.999999 37.999999 25393200 1.174191

In [30]:
aapl.index[0]


Out[30]:
Timestamp('1990-01-02 00:00:00')

In [36]:
aapl.resample("3D").head()


C:\Users\dbackus\AppData\Local\Continuum\Anaconda3\lib\site-packages\ipykernel\__main__.py:1: FutureWarning: .resample() is now a deferred operation
use .resample(...).mean() instead of .resample(...)
  if __name__ == '__main__':
Out[36]:
Open High Low Close Volume Adj Close
Date
1990-01-02 37.166666 38.083333 36.583334 37.458334 5.105893e+07 1.157454
1990-01-05 37.750000 38.250001 36.999999 37.750000 3.082800e+07 1.166467
1990-01-08 37.708333 37.874999 36.583333 37.208333 3.228587e+07 1.149729
1990-01-11 35.250000 35.500000 34.125000 34.499999 4.786880e+07 1.066042
1990-01-14 33.999999 35.375000 33.500000 34.562500 4.699800e+07 1.067973

In [ ]: