**************************************************
Black Boxes
['black_box1103']
["<class '_ast.For'>", "<class '_ast.Assign'>", "<class '_ast.Call'>", "<class '_ast.List'>", "<class '_ast.Load'>", 'black_box2345', 'black_box74', 'black_box4', 'black_box4', 'black_box807']
['black_box1103']
**************************************************
Code
# coding: utf-8
# In[ ]:
df_epfl['user'] #is a dictionnary we want the user's id
#let's build a df with only the tweeter user's id
#df_epfl['user'].iloc[0]['id']
epfl_user = pd.DataFrame()
for i in range(0, df_epfl.shape[0]):
epfl_user = epfl_user.append([df_epfl['user'].iloc[i]['id']])
#I got tricked and there is only one user as said on exam
unique = epfl_user.drop_duplicates()
**************************************************
Black Box meaning
<class '_ast.Assign'> (black_box1103)
<class '_ast.Call'> (black_box224)
<class '_ast.Attribute'> (black_box74)
<class '_ast.Load'>
<class '_ast.Name'> (black_box3)
<class '_ast.Load'>
<class '_ast.Name'> (black_box4)
<class '_ast.Store'>
<class '_ast.Assign'> (black_box1103)
<class '_ast.Call'> (black_box224)
<class '_ast.Attribute'> (black_box74)
<class '_ast.Load'>
<class '_ast.Name'> (black_box3)
<class '_ast.Load'>
<class '_ast.Name'> (black_box4)
<class '_ast.Store'>