In [1]:
import pandas as pd
import numpy as np
from sklearn import svm
import matplotlib.pyplot as plt
import seaborn
In [2]:
df = pd.read_csv("analysis/13141516.csv")
In [11]:
ga_params = df[['P12','P13','P14','P15']].as_matrix()
wait_avg = df['kpi7_avg'].as_matrix()
In [16]:
print("input shape: ", ga_params.shape)
print("target shape: ", wait_avg.shape)
In [10]:
df
Out[10]:
In [17]:
regr = svm.SVR()
In [18]:
regr.fit(ga_params, wait_avg)
Out[18]:
In [19]:
regr.score(ga_params, wait_avg)
Out[19]:
In [27]:
plt.scatter(regr.predict(ga_params), wait_avg)
plt.plot(wait_avg, (lambda x: x)(wait_avg),color='orange')
plt.show()
In [23]:
min(wait_avg)
Out[23]:
In [25]:
regr_c = svm.SVR(C=1e3)
regr_c.fit(ga_params,wait_avg)
In [26]:
plt.scatter(regr_c.predict(ga_params), wait_avg)
plt.plot(wait_avg, (lambda x: x)(wait_avg), color='orange')
plt.show()
In [30]:
regr_c.score(ga_params, wait_avg)
Out[30]:
In [31]:
from sklearn.cross_validation import cross_val_score
In [33]:
cross_val_score(regr_c, ga_params, wait_avg,cv = 10)
Out[33]:
In [34]:
cross_val_score(regr, ga_params, wait_avg, cv=10)
Out[34]:
In [35]:
from sklearn.model_selection import train_test_split
In [42]:
x_train, x_test, y_train, y_test = train_test_split(ga_params, wait_avg, test_size=0.1, random_state=2)
In [46]:
regr_c_0 = svm.SVR(C=1e2).fit(x_train,y_train)
In [47]:
regr_c_0.score(x_test,y_test)
Out[47]:
In [48]:
plt.scatter(regr_c_0.predict(ga_params), wait_avg)
plt.plot(wait_avg, (lambda x: x)(wait_avg), color='orange')
plt.show()
In [ ]: