In [6]:
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.ERROR)
print(tf.__version__)
In [7]:
!curl -O https://raw.githubusercontent.com/DJCordhose/ai/master/notebooks/manning/model/insurance.hdf5
In [8]:
model = tf.keras.models.load_model('insurance.hdf5')
In [9]:
!rm -rf tf
In [10]:
import os
export_path_base = 'tf'
version = 1
export_path = os.path.join(
tf.compat.as_bytes(export_path_base),
tf.compat.as_bytes(str(version)))
tf.keras.backend.set_learning_phase(0)
sess = tf.keras.backend.get_session()
classification_inputs = tf.saved_model.utils.build_tensor_info(model.input)
classification_outputs_scores = tf.saved_model.utils.build_tensor_info(model.output)
signature = tf.saved_model.signature_def_utils.build_signature_def(
inputs={'inputs': classification_inputs},
outputs={'scores': classification_outputs_scores},
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME)
builder = tf.saved_model.builder.SavedModelBuilder(export_path)
builder.add_meta_graph_and_variables(
sess, [tf.saved_model.tag_constants.SERVING],
signature_def_map={
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature
})
builder.save()
Out[10]:
In [ ]: