In [1]:
import matplotlib.pyplot as plt
import numpy as np
In [42]:
train_data = np.load("../data/images/pr_train_simulated_50.0.npy")
test_data = np.load("../data/images/pr_test_simulated_50.0.npy")
all_data = np.concatenate([train_data, test_data])
np.save("../data/images/project_data.npy", all_data)
train_targets = np.load("../data/targets/train_targets.npy")
test_targets = np.load("../data/targets/test_targets.npy")
all_targets = np.concatenate([train_targets, test_targets])
np.save("../data/targets/project_targets.npy", all_targets)
In [43]:
train_data.shape
Out[43]:
In [33]:
train.shape
Out[33]:
In [35]:
plt.imshow(train[4].reshape((128, 128)))
Out[35]:
In [36]:
other_maxs = np.zeros(train.shape[0])
for i, e in enumerate(train):
other_maxs[i] = e.max()
In [37]:
other_maxs.shape
Out[37]:
In [17]:
maxs = np.amax(train, axis=(1,2, 3))
In [18]:
maxs.shape
Out[18]:
In [38]:
plt.hist(other_maxs, bins=20)
Out[38]:
In [ ]: