In [1]:
import seaborn as sns
import metapack as mp
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display
%matplotlib inline
sns.set_context('notebook')
In [2]:
#pkg = mp.jupyter.open_package()
pkg = mp.jupyter.open_source_package()
pkg
Out[2]:
In [3]:
pums = pkg.reference('sd_pums').dataframe()
sdc_pums = list(pums[pums.GEOID10.astype('str').str.startswith('6073')].PUMACE10)
In [4]:
df = pkg.reference('pums_ca_pop').dataframe()
In [5]:
# Get the records that are in San Diego county0
df_sd_pop=df[df.PUMA.isin(sdc_pums)]
len(df_sd_pop)
Out[5]:
In [6]:
df = pkg.reference('pums_ca_house').dataframe()
In [7]:
# Get the records that are in San Diego county
df_sd_house=df[df.PUMA.isin(sdc_pums)]
len(df_sd_house)
Out[7]: