In [1]:
import pygal
import numpy as np
import pandas as pd
In [36]:
from pygal.style import CleanStyle
In [3]:
throw = [1,2,3,4,5,6,7,8];
throw
Out[3]:
In [4]:
Paloma_c = [2,2,3,3,1,1,2,1]
Paloma_p = [1,1,2,2,1,2,2,2]
Paloma_n = [1,1,2,2,1,1,2,1]
In [5]:
Raphael_c = [3,1,2,2,2,1,2,2]
Raphael_p = [2,2,2,2,1,2,2,3]
Raphael_n = [1,1,1,1,1,1,2,1]
In [6]:
Alex_c = [4,3,3,2,2,3,2,3]
Alex_p = [3,2,1,1,1,1,2,1]
Alex_n = [2,1,3,1,1,2,2,2]
In [7]:
Charlotte_c = [3,3,1,2,3,2,3,2]
Charlotte_p = [2,4,1,1,1,1,1,2]
Charlotte_n = [2,1,3,1,1,1,1,1]
In [38]:
# Paloma
fig1 = pygal.XY(show_y_guides=False, dots_size=5, stroke_style={'width': 3}, style=CleanStyle)
fig1.title = 'Prism adaptation data'
fig1.x_title = 'Throw number'
fig1.y_title = 'Ring number'
fig1.y_labels=[0,1,2,3,4];
fig1.add('Paloma(Control)', list(zip(throw,Paloma_c)))
fig1.add('Paloma(Pos)', list(zip(throw,Paloma_p)))
fig1.add('Paloma(Neg)', list(zip(throw,Paloma_n)))
fig1.render_to_file('MB_Paloma.svg')
In [39]:
# Raphael
fig1 = pygal.XY(show_y_guides=False, dots_size=5, stroke_style={'width': 3}, style=CleanStyle)
fig1.title = 'Prism adaptation data'
fig1.x_title = 'Throw number'
fig1.y_title = 'Ring number'
fig1.y_labels=[0,1,2,3,4];
fig1.add('Raphael(Control)', list(zip(throw,Raphael_c)))
fig1.add('Raphael(Pos)', list(zip(throw,Raphael_p)))
fig1.add('Raphael(Neg)', list(zip(throw,Raphael_n)))
fig1.render_to_file('MB_Raphael.svg')
In [40]:
# Alex
fig1 = pygal.XY(show_y_guides=False, dots_size=5, stroke_style={'width': 3}, style=CleanStyle)
fig1.title = 'Prism adaptation data'
fig1.x_title = 'Throw number'
fig1.y_title = 'Ring number'
fig1.y_labels=[0,1,2,3,4];
fig1.add('Alex(Control)', list(zip(throw,Alex_c)))
fig1.add('Alex(Pos)', list(zip(throw,Alex_p)))
fig1.add('Alex(Neg)', list(zip(throw,Alex_n)))
fig1.render_to_file('MB_Alex.svg')
In [41]:
# Charlotte
fig1 = pygal.XY(show_y_guides=False, dots_size=5, stroke_style={'width': 3}, style=CleanStyle)
fig1.title = 'Prism adaptation data'
fig1.x_title = 'Throw number'
fig1.y_title = 'Ring number'
fig1.y_labels=[0,1,2,3,4];
fig1.add('Charlotte(Control)', list(zip(throw,Charlotte_c)))
fig1.add('Charlotte(Pos)', list(zip(throw,Charlotte_p)))
fig1.add('Charlotte(Neg)', list(zip(throw,Charlotte_n)))
fig1.render_to_file('MB_Charlotte.svg')
In [53]:
Sam_cthrow = range(34);
Sam_c = [2,2,1,2,3,2,2,4,2,1,3,2,1,1,3,1,3,1,2,1,1,2,1,2,1,2,1,2,1,2,1,1,1]
Sam_pthrow = range(39);
Sam_p = [4,4,4,4,4,3,4,4,4,5,1,2,1,3,3,2,3,1,2,2,3,2,1,2,1,2,2,2,2,2,2,2,1,2,2,2,1,1,1
]
Sam_nthrow = range(6)
Sam_n = [3,2,2,1,1,1]
# Sam
fig1 = pygal.XY(show_y_guides=False, dots_size=5, stroke_style={'width': 3}, style=CleanStyle)
fig1.title = 'Prism adaptation data'
fig1.x_title = 'Throw number'
fig1.y_title = 'Ring number'
fig1.y_labels=[0,1,2,3,4];
fig1.add('Sam(Control)', list(zip(Sam_cthrow,Sam_c)))
fig1.add('Sam(Pos)', list(zip(Sam_pthrow,Sam_p)))
fig1.add('Sam(Neg)', list(zip(Sam_nthrow,Sam_n)))
fig1.render_to_file('MB_Sam.svg')
In [55]:
Bruno_cthrow = range(16);
Bruno_c = [3,2,3,2,5,5,4,2,1,1,2,3,2,1,1,1]
Bruno_pthrow = range(65);
Bruno_p = [3,4,1,4,1,2,2,4,1,1,4,4,1,3,4,2,2,2,2,2,1,3,3,5,2,2,2,2,2,2,1,2,2,1,2,2,3,1,1,2,2,1,2,2,1,1,2,1,2,2,3,3,1,3,2,1,1,2,2,1,2,1,1,1]
Bruno_nthrow = range(85)
Bruno_n = [2,2,2,3,5,3,5,2,3,2,2,2,3,4,2,2,1,2,1,2,2,2,1,3,1,3,1,2,2,2,2,5,2,1,2,2,1,4,3,5,2,2,1,2,2,2,1,1,4,1,1,2,2,2,2,2,1,2,2,2,2,2,2,2,4,2,2,1,2,2,2,2,2,1,2,1,2,2,2,3,1,2,1,1,1]
# Bruno
fig1 = pygal.XY(show_y_guides=False, dots_size=5, stroke_style={'width': 3}, style=CleanStyle)
fig1.title = 'Prism adaptation data'
fig1.x_title = 'Throw number'
fig1.y_title = 'Ring number'
fig1.y_labels=[0,1,2,3,4];
fig1.add('Bruno(Control)', list(zip(Bruno_cthrow,Bruno_c)))
fig1.add('Bruno(Pos)', list(zip(Bruno_pthrow,Bruno_p)))
fig1.add('Bruno(Neg)', list(zip(Bruno_nthrow,Bruno_n)))
fig1.render_to_file('MB_Bruno.svg')
In [ ]:
In [ ]: