In [1]:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sbn

In [7]:
pwd


Out[7]:
u'/home/chiroptera/workspace/QCThesis/notebooks'

In [3]:
ls ../experiments/threshold/


all_stats.csv            iris_stats.csv          pima_stats.csv
house_votes.csv          isolet.csv              some_yeast_weird_results.csv
house_votes_stats.csv    mfeat-fou.csv           synthetic_control.csv
ionosphere.csv           mfeat-fou_lifetime.csv  synthetic_control_lifetime.csv
ionosphere_lifetime.csv  optdigits.csv           synthetic_control_stats.csv
ionosphere_stats.csv     optdigits_lifetime.csv  wine.csv
iris.csv                 pima.csv                wine_stats.csv
iris_lifetime.csv        pima_lifetime.csv

In [10]:
#folder = "/home/diogoaos/QCThesis/experiments/threshold/"
folder = "/home/chiroptera/QCThesis/experiments/threshold/"
name = "pima"

In [147]:
resPD = pd.read_csv(folder + name + ".csv")

In [148]:
n_samples=768

In [149]:
rounds = int(resPD.round.max() + 1)
irisStats = np.zeros((rounds, 5))
#threshold, n_assocs, assocs reduction

In [150]:
resPD.columns


Out[150]:
Index([u'threshold', u'max assoc', u'n assocs', u'accuracy', u'round'], dtype='object')

In [151]:
resPD


Out[151]:
threshold max assoc n assocs accuracy round
0 0.00 329 167140 0.645833 0
1 0.05 276 120960 0.645833 0
2 0.10 201 95960 0.645833 0
3 0.15 172 81060 0.645833 0
4 0.20 137 69858 0.645833 0
5 0.25 119 60564 0.645833 0
6 0.30 110 52232 0.645833 0
7 0.35 95 45326 0.515625 0
8 0.40 85 39064 0.515625 0
9 0.45 74 33800 0.515625 0
10 0.50 67 28798 0.515625 0
11 0.55 59 23968 0.515625 0
12 0.60 53 19558 0.515625 0
13 0.65 45 15620 0.515625 0
14 0.70 37 11966 0.649740 0
15 0.75 31 8890 0.649740 0
16 0.80 26 6490 0.649740 0
17 0.85 21 4400 0.643229 0
18 0.90 17 2694 0.649740 0
19 0.95 13 1442 0.648438 0
20 1.00 3 802 0.649740 0
21 0.00 342 178568 0.645833 1
22 0.05 264 120154 0.645833 1
23 0.10 207 93636 0.645833 1
24 0.15 167 78752 0.645833 1
25 0.20 144 67748 0.645833 1
26 0.25 117 58720 0.645833 1
27 0.30 105 50832 0.645833 1
28 0.35 90 43842 0.645833 1
29 0.40 80 37746 0.645833 1
... ... ... ... ... ...
390 0.60 52 20158 0.649740 18
391 0.65 47 15994 0.649740 18
392 0.70 38 12360 0.649740 18
393 0.75 31 9240 0.647135 18
394 0.80 26 6752 0.652344 18
395 0.85 23 4716 0.653646 18
396 0.90 18 2948 0.649740 18
397 0.95 17 1614 0.652344 18
398 1.00 5 844 0.649740 18
399 0.00 389 174512 0.645833 19
400 0.05 258 119444 0.645833 19
401 0.10 210 95224 0.645833 19
402 0.15 171 79946 0.645833 19
403 0.20 145 69050 0.645833 19
404 0.25 130 59984 0.645833 19
405 0.30 107 52034 0.645833 19
406 0.35 95 45152 0.515625 19
407 0.40 80 38962 0.515625 19
408 0.45 74 33792 0.515625 19
409 0.50 69 28658 0.515625 19
410 0.55 60 23886 0.515625 19
411 0.60 51 19466 0.515625 19
412 0.65 44 15486 0.648438 19
413 0.70 35 12054 0.648438 19
414 0.75 30 8868 0.649740 19
415 0.80 25 6392 0.649740 19
416 0.85 20 4374 0.648438 19
417 0.90 16 2666 0.651042 19
418 0.95 12 1418 0.649740 19
419 1.00 5 828 0.652344 19

420 rows × 5 columns


In [156]:
this_round = 0
full_assocs = resPD['n assocs'][0]
round_done = False
for i in range(2,resPD.shape[0]):
    curr_round = resPD.round[i]
    if curr_round != resPD.round[i-1]:
        if not round_done:
            irisStats[curr_round, 0] = 1
            irisStats[curr_round, 1] = resPD['max assoc'][i-1]
            irisStats[curr_round, 2] = resPD['n assocs'][i-1]
            irisStats[curr_round, 3] = resPD['n assocs'][i-1] / full_assocs
        full_assocs = resPD['n assocs'][i]
        round_done = False
        continue
    if resPD.accuracy[i] != resPD.accuracy[i-1] and not round_done:
#    if abs(resPD.accuracy[i] - resPD.accuracy[i-1]) > 0.01 and not round_done:
        irisStats[curr_round, 0] = resPD.threshold[i-1]
        irisStats[curr_round, 1] = resPD['max assoc'][i-1]
        irisStats[curr_round, 2] = resPD['n assocs'][i-1]
        irisStats[curr_round, 3] = resPD['n assocs'][i-1] / full_assocs
        round_done = True
irisStats[:,4] = irisStats[:,2] / (n_samples**2)

In [157]:
columns = ["threshold", "max_assocs", "n_assocs", "n_assocs_pc", "density"]
irisStatsPD = pd.DataFrame(irisStats, columns=columns)
irisStatsPD


Out[157]:
threshold max_assocs n_assocs n_assocs_pc density
0 0.30 110 52232 0.312504 0.088555
1 0.70 35 11464 0.064200 0.019436
2 0.30 115 54418 0.321912 0.092261
3 0.35 100 45452 0.268804 0.077060
4 0.30 116 54126 0.288269 0.091766
5 0.35 90 45018 0.268992 0.076324
6 0.30 108 51462 0.306976 0.087250
7 0.30 114 50788 0.300407 0.086107
8 0.25 111 56418 0.342787 0.095652
9 0.35 105 48216 0.251723 0.081746
10 0.35 99 45300 0.252022 0.076803
11 0.65 42 15208 0.084069 0.025784
12 0.35 94 45258 0.281634 0.076731
13 0.30 111 51750 0.299868 0.087738
14 0.30 107 52262 0.310858 0.088606
15 0.30 114 55438 0.300087 0.093991
16 0.65 42 15348 0.083961 0.026021
17 0.30 111 51676 0.304704 0.087613
18 0.30 109 51414 0.293492 0.087168
19 0.30 107 52034 0.298169 0.088220

In [159]:
irisStatsPD.to_csv(path_or_buf=folder + name + "_stats.csv")

In [160]:
irisStatsPD['dataset']=name

In [73]:
allStatsPD = pd.read_csv("/home/chiroptera/QCThesis/experiments/threshold/all_stats.csv")

In [76]:
allStatsPD.groupby("dataset").describe()


Out[76]:
density max_assocs n_assocs n_assocs_pc threshold
dataset
house_votes count 20.000000 20.000000 20.000000 20.000000 20.000000
mean 0.082077 37.200000 4417.700000 0.161542 0.542500
std 0.103824 34.330591 5588.227448 0.202918 0.157509
min 0.019620 12.000000 1056.000000 0.039094 0.000000
25% 0.042397 24.000000 2282.000000 0.083453 0.500000
50% 0.068538 32.500000 3689.000000 0.134770 0.525000
75% 0.079416 36.500000 4274.500000 0.156169 0.612500
max 0.511408 176.000000 27526.000000 1.000000 0.750000
ionosphere count 20.000000 20.000000 20.000000 20.000000 20.000000
mean 0.006342 7.000000 781.300000 0.011596 0.882500
std 0.015413 13.603405 1898.900516 0.028146 0.311733
min 0.000000 0.000000 0.000000 0.000000 0.000000
25% 0.003072 3.000000 378.500000 0.005603 1.000000
50% 0.003157 4.000000 389.000000 0.005851 1.000000
75% 0.003279 5.000000 404.000000 0.005972 1.000000
max 0.071680 64.000000 8831.000000 0.130909 1.000000
iris count 20.000000 20.000000 20.000000 20.000000 20.000000
mean 0.108733 24.950000 2446.500000 0.241998 0.632500
std 0.014686 3.425523 330.428032 0.039123 0.049404
min 0.073778 18.000000 1660.000000 0.159173 0.600000
25% 0.105756 23.750000 2379.500000 0.227508 0.600000
50% 0.114667 25.500000 2580.000000 0.259635 0.600000
75% 0.118956 27.000000 2676.500000 0.268773 0.650000
max 0.121333 33.000000 2730.000000 0.284069 0.750000
pima count 20.000000 20.000000 20.000000 20.000000 20.000000
mean 0.076742 97.000000 45264.100000 0.261772 0.365000
std 0.023573 25.663818 13904.044447 0.082531 0.132883
min 0.019436 35.000000 11464.000000 0.064200 0.250000
25% 0.076785 97.750000 45289.500000 0.264608 0.300000
50% 0.087209 107.500000 51438.000000 0.295831 0.300000
75% 0.088568 111.000000 52239.500000 0.305272 0.350000
max 0.095652 116.000000 56418.000000 0.342787 0.700000
synthetic_control count 20.000000 20.000000 20.000000 20.000000 20.000000
mean 0.059183 100.000000 21305.900000 0.196395 0.647500
std 0.003841 0.000000 1382.834690 0.019524 0.034317
min 0.050272 100.000000 18098.000000 0.164606 0.600000
25% 0.058492 100.000000 21057.000000 0.179398 0.637500
50% 0.059756 100.000000 21512.000000 0.200540 0.650000
75% 0.061304 100.000000 22069.500000 0.207242 0.650000
max 0.064361 100.000000 23170.000000 0.232961 0.700000
wine count 20.000000 20.000000 20.000000 20.000000 20.000000
mean 0.075388 20.900000 2388.600000 0.176541 0.722500
std 0.009091 2.468752 288.029311 0.023238 0.037958
min 0.059967 17.000000 1900.000000 0.143830 0.650000
25% 0.068331 19.000000 2165.000000 0.160566 0.700000
50% 0.074201 20.000000 2351.000000 0.171510 0.725000
75% 0.082202 22.000000 2604.500000 0.191682 0.750000
max 0.093296 27.000000 2956.000000 0.224928 0.800000

In [24]:
raw = allStatsPD.values

In [68]:
allStatsPD = pd.DataFrame(raw, columns=columns)

In [112]:
print desc.to_html()


<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th></th>
      <th>density</th>
      <th>max_assocs</th>
      <th>n_assocs</th>
      <th>n_assocs_pc</th>
      <th>threshold</th>
    </tr>
    <tr>
      <th>dataset</th>
      <th></th>
      <th></th>
      <th></th>
      <th></th>
      <th></th>
      <th></th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th rowspan="8" valign="top">house_votes</th>
      <th>count</th>
      <td>20.000000</td>
      <td>20.000000</td>
      <td>20.000000</td>
      <td>20.000000</td>
      <td>20.000000</td>
    </tr>
    <tr>
      <th>mean</th>
      <td>0.082077</td>
      <td>37.200000</td>
      <td>4417.700000</td>
      <td>0.161542</td>
      <td>0.542500</td>
    </tr>
    <tr>
      <th>std</th>
      <td>0.103824</td>
      <td>34.330591</td>
      <td>5588.227448</td>
      <td>0.202918</td>
      <td>0.157509</td>
    </tr>
    <tr>
      <th>min</th>
      <td>0.019620</td>
      <td>12.000000</td>
      <td>1056.000000</td>
      <td>0.039094</td>
      <td>0.000000</td>
    </tr>
    <tr>
      <th>25%</th>
      <td>0.042397</td>
      <td>24.000000</td>
      <td>2282.000000</td>
      <td>0.083453</td>
      <td>0.500000</td>
    </tr>
    <tr>
      <th>50%</th>
      <td>0.068538</td>
      <td>32.500000</td>
      <td>3689.000000</td>
      <td>0.134770</td>
      <td>0.525000</td>
    </tr>
    <tr>
      <th>75%</th>
      <td>0.079416</td>
      <td>36.500000</td>
      <td>4274.500000</td>
      <td>0.156169</td>
      <td>0.612500</td>
    </tr>
    <tr>
      <th>max</th>
      <td>0.511408</td>
      <td>176.000000</td>
      <td>27526.000000</td>
      <td>1.000000</td>
      <td>0.750000</td>
    </tr>
    <tr>
      <th rowspan="8" valign="top">ionosphere</th>
      <th>count</th>
      <td>20.000000</td>
      <td>20.000000</td>
      <td>20.000000</td>
      <td>20.000000</td>
      <td>20.000000</td>
    </tr>
    <tr>
      <th>mean</th>
      <td>0.006342</td>
      <td>7.000000</td>
      <td>781.300000</td>
      <td>0.011596</td>
      <td>0.882500</td>
    </tr>
    <tr>
      <th>std</th>
      <td>0.015413</td>
      <td>13.603405</td>
      <td>1898.900516</td>
      <td>0.028146</td>
      <td>0.311733</td>
    </tr>
    <tr>
      <th>min</th>
      <td>0.000000</td>
      <td>0.000000</td>
      <td>0.000000</td>
      <td>0.000000</td>
      <td>0.000000</td>
    </tr>
    <tr>
      <th>25%</th>
      <td>0.003072</td>
      <td>3.000000</td>
      <td>378.500000</td>
      <td>0.005603</td>
      <td>1.000000</td>
    </tr>
    <tr>
      <th>50%</th>
      <td>0.003157</td>
      <td>4.000000</td>
      <td>389.000000</td>
      <td>0.005851</td>
      <td>1.000000</td>
    </tr>
    <tr>
      <th>75%</th>
      <td>0.003279</td>
      <td>5.000000</td>
      <td>404.000000</td>
      <td>0.005972</td>
      <td>1.000000</td>
    </tr>
    <tr>
      <th>max</th>
      <td>0.071680</td>
      <td>64.000000</td>
      <td>8831.000000</td>
      <td>0.130909</td>
      <td>1.000000</td>
    </tr>
    <tr>
      <th rowspan="8" valign="top">iris</th>
      <th>count</th>
      <td>20.000000</td>
      <td>20.000000</td>
      <td>20.000000</td>
      <td>20.000000</td>
      <td>20.000000</td>
    </tr>
    <tr>
      <th>mean</th>
      <td>0.108733</td>
      <td>24.950000</td>
      <td>2446.500000</td>
      <td>0.241998</td>
      <td>0.632500</td>
    </tr>
    <tr>
      <th>std</th>
      <td>0.014686</td>
      <td>3.425523</td>
      <td>330.428032</td>
      <td>0.039123</td>
      <td>0.049404</td>
    </tr>
    <tr>
      <th>min</th>
      <td>0.073778</td>
      <td>18.000000</td>
      <td>1660.000000</td>
      <td>0.159173</td>
      <td>0.600000</td>
    </tr>
    <tr>
      <th>25%</th>
      <td>0.105756</td>
      <td>23.750000</td>
      <td>2379.500000</td>
      <td>0.227508</td>
      <td>0.600000</td>
    </tr>
    <tr>
      <th>50%</th>
      <td>0.114667</td>
      <td>25.500000</td>
      <td>2580.000000</td>
      <td>0.259635</td>
      <td>0.600000</td>
    </tr>
    <tr>
      <th>75%</th>
      <td>0.118956</td>
      <td>27.000000</td>
      <td>2676.500000</td>
      <td>0.268773</td>
      <td>0.650000</td>
    </tr>
    <tr>
      <th>max</th>
      <td>0.121333</td>
      <td>33.000000</td>
      <td>2730.000000</td>
      <td>0.284069</td>
      <td>0.750000</td>
    </tr>
    <tr>
      <th rowspan="8" valign="top">pima</th>
      <th>count</th>
      <td>20.000000</td>
      <td>20.000000</td>
      <td>20.000000</td>
      <td>20.000000</td>
      <td>20.000000</td>
    </tr>
    <tr>
      <th>mean</th>
      <td>0.076742</td>
      <td>97.000000</td>
      <td>45264.100000</td>
      <td>0.261772</td>
      <td>0.365000</td>
    </tr>
    <tr>
      <th>std</th>
      <td>0.023573</td>
      <td>25.663818</td>
      <td>13904.044447</td>
      <td>0.082531</td>
      <td>0.132883</td>
    </tr>
    <tr>
      <th>min</th>
      <td>0.019436</td>
      <td>35.000000</td>
      <td>11464.000000</td>
      <td>0.064200</td>
      <td>0.250000</td>
    </tr>
    <tr>
      <th>25%</th>
      <td>0.076785</td>
      <td>97.750000</td>
      <td>45289.500000</td>
      <td>0.264608</td>
      <td>0.300000</td>
    </tr>
    <tr>
      <th>50%</th>
      <td>0.087209</td>
      <td>107.500000</td>
      <td>51438.000000</td>
      <td>0.295831</td>
      <td>0.300000</td>
    </tr>
    <tr>
      <th>75%</th>
      <td>0.088568</td>
      <td>111.000000</td>
      <td>52239.500000</td>
      <td>0.305272</td>
      <td>0.350000</td>
    </tr>
    <tr>
      <th>max</th>
      <td>0.095652</td>
      <td>116.000000</td>
      <td>56418.000000</td>
      <td>0.342787</td>
      <td>0.700000</td>
    </tr>
    <tr>
      <th rowspan="8" valign="top">synthetic_control</th>
      <th>count</th>
      <td>20.000000</td>
      <td>20.000000</td>
      <td>20.000000</td>
      <td>20.000000</td>
      <td>20.000000</td>
    </tr>
    <tr>
      <th>mean</th>
      <td>0.059183</td>
      <td>100.000000</td>
      <td>21305.900000</td>
      <td>0.196395</td>
      <td>0.647500</td>
    </tr>
    <tr>
      <th>std</th>
      <td>0.003841</td>
      <td>0.000000</td>
      <td>1382.834690</td>
      <td>0.019524</td>
      <td>0.034317</td>
    </tr>
    <tr>
      <th>min</th>
      <td>0.050272</td>
      <td>100.000000</td>
      <td>18098.000000</td>
      <td>0.164606</td>
      <td>0.600000</td>
    </tr>
    <tr>
      <th>25%</th>
      <td>0.058492</td>
      <td>100.000000</td>
      <td>21057.000000</td>
      <td>0.179398</td>
      <td>0.637500</td>
    </tr>
    <tr>
      <th>50%</th>
      <td>0.059756</td>
      <td>100.000000</td>
      <td>21512.000000</td>
      <td>0.200540</td>
      <td>0.650000</td>
    </tr>
    <tr>
      <th>75%</th>
      <td>0.061304</td>
      <td>100.000000</td>
      <td>22069.500000</td>
      <td>0.207242</td>
      <td>0.650000</td>
    </tr>
    <tr>
      <th>max</th>
      <td>0.064361</td>
      <td>100.000000</td>
      <td>23170.000000</td>
      <td>0.232961</td>
      <td>0.700000</td>
    </tr>
    <tr>
      <th rowspan="8" valign="top">wine</th>
      <th>count</th>
      <td>20.000000</td>
      <td>20.000000</td>
      <td>20.000000</td>
      <td>20.000000</td>
      <td>20.000000</td>
    </tr>
    <tr>
      <th>mean</th>
      <td>0.075388</td>
      <td>20.900000</td>
      <td>2388.600000</td>
      <td>0.176541</td>
      <td>0.722500</td>
    </tr>
    <tr>
      <th>std</th>
      <td>0.009091</td>
      <td>2.468752</td>
      <td>288.029311</td>
      <td>0.023238</td>
      <td>0.037958</td>
    </tr>
    <tr>
      <th>min</th>
      <td>0.059967</td>
      <td>17.000000</td>
      <td>1900.000000</td>
      <td>0.143830</td>
      <td>0.650000</td>
    </tr>
    <tr>
      <th>25%</th>
      <td>0.068331</td>
      <td>19.000000</td>
      <td>2165.000000</td>
      <td>0.160566</td>
      <td>0.700000</td>
    </tr>
    <tr>
      <th>50%</th>
      <td>0.074201</td>
      <td>20.000000</td>
      <td>2351.000000</td>
      <td>0.171510</td>
      <td>0.725000</td>
    </tr>
    <tr>
      <th>75%</th>
      <td>0.082202</td>
      <td>22.000000</td>
      <td>2604.500000</td>
      <td>0.191682</td>
      <td>0.750000</td>
    </tr>
    <tr>
      <th>max</th>
      <td>0.093296</td>
      <td>27.000000</td>
      <td>2956.000000</td>
      <td>0.224928</td>
      <td>0.800000</td>
    </tr>
  </tbody>
</table>

In [109]:
print desc.to_html


\begin{tabular}{llrrrrr}
\toprule
            &       &    density &  max\_assocs &      n\_assocs &  n\_assocs\_pc &  threshold \\
\midrule
house\_votes & count &            &             &               &              &            \\
ionosphere & mean &  20.000000 &   20.000000 &     20.000000 &    20.000000 &  20.000000 \\
iris & std &   0.082077 &   37.200000 &   4417.700000 &     0.161542 &   0.542500 \\
pima & min &   0.103824 &   34.330591 &   5588.227448 &     0.202918 &   0.157509 \\
synthetic\_control & 25\% &   0.019620 &   12.000000 &   1056.000000 &     0.039094 &   0.000000 \\
wine & 50\% &   0.042397 &   24.000000 &   2282.000000 &     0.083453 &   0.500000 \\
\bottomrule
\end{tabular}


In [ ]:


In [91]:
desc_d=desc.to_dense()

In [80]:
desc=allStatsPD.groupby("dataset").describe()

In [14]:
allStatsPD.dataset.unique()


Out[14]:
array(['iris', 'wine', 'house_votes', 'ionosphere', 'synthetic_control',
       'pima'], dtype=object)

In [105]:
#allStatsPD = allStatsPD.append(irisStatsPD,ignore_index=True)
allStatsPD.to_csv(folder + "all_stats.csv", index=False)
allStatsPD


Out[105]:
threshold max_assocs n_assocs n_assocs_pc density dataset
0 0.60 26 2558 0.263983 0.113689 iris
1 0.65 24 2466 0.237481 0.109600 iris
2 0.60 26 2692 0.269308 0.119644 iris
3 0.60 26 2672 0.227404 0.118756 iris
4 0.65 25 2406 0.253050 0.106933 iris
5 0.75 18 1668 0.166135 0.074133 iris
6 0.65 22 2288 0.194459 0.101689 iris
7 0.60 24 2690 0.271169 0.119556 iris
8 0.60 29 2664 0.284069 0.118400 iris
9 0.60 27 2654 0.263294 0.117956 iris
10 0.60 27 2720 0.263107 0.120889 iris
11 0.75 19 1660 0.170782 0.073778 iris
12 0.60 26 2622 0.272331 0.116533 iris
13 0.60 33 2694 0.268594 0.119733 iris
14 0.70 21 1940 0.159173 0.086222 iris
15 0.65 23 2300 0.227543 0.102222 iris
16 0.60 24 2452 0.247227 0.108978 iris
17 0.65 24 2452 0.256164 0.108978 iris
18 0.60 27 2730 0.264484 0.121333 iris
19 0.60 28 2602 0.280207 0.115644 iris
20 0.80 17 1900 0.143830 0.059967 wine
21 0.70 22 2446 0.158010 0.077200 wine
22 0.75 19 2096 0.147897 0.066153 wine
23 0.75 20 2256 0.174020 0.071203 wine
24 0.75 19 2174 0.169658 0.068615 wine
25 0.70 20 2464 0.172452 0.077768 wine
26 0.75 19 2122 0.161418 0.066974 wine
27 0.65 25 2956 0.224928 0.093296 wine
28 0.70 22 2632 0.174721 0.083070 wine
29 0.75 19 2066 0.167831 0.065206 wine
... ... ... ... ... ... ...
90 0.65 100 21566 0.201393 0.059906 synthetic_control
91 0.60 100 23170 0.228830 0.064361 synthetic_control
92 0.70 100 19428 0.172393 0.053967 synthetic_control
93 0.65 100 20946 0.205914 0.058183 synthetic_control
94 0.65 100 21796 0.179524 0.060544 synthetic_control
95 0.65 100 21280 0.192450 0.059111 synthetic_control
96 0.60 100 22632 0.218815 0.062867 synthetic_control
97 0.65 100 21586 0.209854 0.059961 synthetic_control
98 0.65 100 21094 0.201140 0.058594 synthetic_control
99 0.70 100 18098 0.164614 0.050272 synthetic_control
100 0.30 110 52232 0.312504 0.088555 pima
101 0.70 35 11464 0.064200 0.019436 pima
102 0.30 115 54418 0.321912 0.092261 pima
103 0.35 100 45452 0.268804 0.077060 pima
104 0.30 116 54126 0.288269 0.091766 pima
105 0.35 90 45018 0.268992 0.076324 pima
106 0.30 108 51462 0.306976 0.087250 pima
107 0.30 114 50788 0.300407 0.086107 pima
108 0.25 111 56418 0.342787 0.095652 pima
109 0.35 105 48216 0.251723 0.081746 pima
110 0.35 99 45300 0.252022 0.076803 pima
111 0.65 42 15208 0.084069 0.025784 pima
112 0.35 94 45258 0.281634 0.076731 pima
113 0.30 111 51750 0.299868 0.087738 pima
114 0.30 107 52262 0.310858 0.088606 pima
115 0.30 114 55438 0.300087 0.093991 pima
116 0.65 42 15348 0.083961 0.026021 pima
117 0.30 111 51676 0.304704 0.087613 pima
118 0.30 109 51414 0.293492 0.087168 pima
119 0.30 107 52034 0.298169 0.088220 pima

120 rows × 6 columns