In [19]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import sys
import os
# add path for custom modules
mypath=os.path.abspath('/home/chiroptera/workspace/thesis/quantum k-means/implementation')
if not mypath in sys.path:
sys.path.insert(1, mypath)
del mypath
In [2]:
def rot(angle):
return np.matrix([[np.cos(angle),-np.sin(angle)],[np.sin(angle),np.cos(angle)]])
In [3]:
q=np.transpose(np.matrix([1/np.sqrt(2),1/np.sqrt(2)]))
print q
x=rot(np.pi/4)*q
print x
np.transpose(x)*x
Out[3]:
In [4]:
from sklearn.cluster import KMeans
import DaviesBouldin
reload(DaviesBouldin)
Out[4]:
In [5]:
# generate gaussians
gauss1=np.random.normal((-5,3),[0.25,2],(100,2))
gauss2=np.random.normal((2,-2),[0.25,0.25],(100,2))
gauss3=np.random.normal((2,2),[0.5,0.25],(100,2))
mixture=np.concatenate((gauss1,gauss2,gauss3))
# K-Means
numClusters=2
initType='k-means++'
estimator = KMeans(n_clusters=numClusters,init=initType)
assignment=estimator.fit_predict(mixture)
centroids=estimator.cluster_centers_
# Davies-Bouldin
score = DaviesBouldin.DaviesBouldin(mixture,centroids,assignment)
print "Davies-Bouldin score = ",score.eval()
In [24]:
import oracle
import qubitLib
import DaviesBouldin
from sklearn.cluster import KMeans
reload(DaviesBouldin)
reload(oracle)
reload(qubitLib)
Out[24]:
In [8]:
# generate gaussians
numGauss=3
gMix=list()
gMix.append(np.random.normal((-5,3),[0.25,2],(100,2)))
gMix.append(np.random.normal((2,-2),[0.25,0.25],(100,2)))
gMix.append(np.random.normal((2,10),[0.75,0.25],(100,2)))
mixture=np.concatenate(tuple(gMix))
# add outliers
# plot data points
for i in range(0,len(gMix)):
plt.plot(gMix[i][:,0],gMix[i][:,1],'.')
We start by creating several oracles (each representing a possible solution) and collapsing them into some values. The values to which the oracles collapsed are shown below. Each Oracle has $numClusters \times 2$ qubit strings since we're using two dimensional data. The length of the qubit strings specifies the magnitude to which the centroid values can go. In this example the data takes low values so we'll use only 5 bits, ranging the interval $[-16,16]$.
In [48]:
numClusters=7
numOracles=5
qubitStringLen=5
oras=list()
for i in range(0,5):
oras.append(oracle.Oracle())
oras[i].initialization(numClusters*2,qubitStringLen)
oras[i].collapse()
print "Oracle ",i
print oras[i].getFloatArrays()
print oras[i].getIntArrays()
print oras[i].qstrings[0].binVal
In [87]:
for i,ora in enumerate(oras):
centroids = np.vstack(np.hsplit(ora.getIntArrays(),numClusters))
estimator = KMeans(n_clusters=numClusters,init=centroids,n_init=1)
assignment=estimator.fit_predict(mixture)
centroids=estimator.cluster_centers_
ora.setIntArrays(np.concatenate(centroids))
print np.around(np.concatenate(centroids))[0],type(np.int(np.around(np.concatenate(centroids))[0]))
score = DaviesBouldin.DaviesBouldin(mixture,centroids,assignment)
ora.score=score.eval()
print "Davies-Bouldin score of Oracle",i,"=",ora.score
With the first iteration performed, we compare all the oracles and keep only the best one. The others are subjected to a quantum rotation gate. The results below show the $\alpha$ and $\beta$ values of the qubits from the first qubit string of each oracle before and after the quantum rotation gate is applyed.
In [8]:
best=0
for i in range(1,numOracles):
if oras[i].score<oras[i-1].score:
best=i
print "Best oracle was ",best
for i in range(0,numOracles):
if i == best:
continue
print "Oracle ",i
qbString=list()
for j in range(0,qubitStringLen):
qbString.append([oras[i].qstrings[0].quString[j].alpha,oras[i].qstrings[0].quString[j].beta])
print "Old qubit 1st string:\n",np.array(qbString)
oras[i].QuantumGateStep(oras[best])
qbString=list()
for j in range(0,qubitStringLen):
qbString.append([oras[i].qstrings[0].quString[j].alpha,oras[i].qstrings[0].quString[j].beta])
print "New qubit 1st string:\n",np.array(qbString)
In [274]:
## Initialization step
numClusters=5
numOracles=5
qubitStringLen=5
qGenerations=500
best=0 #index of best oracle (starts at 0)
oras=list()
centroids=[0]*numOracles
estimator=[0]*numOracles
assignment=[0]*numOracles
for i in range(0,numOracles):
oras.append(oracle.Oracle())
oras[i].initialization(numClusters*2,qubitStringLen)
oras[i].collapse()
for qGen_ in range(0,qGenerations):
## Clustering step
for i,ora in enumerate(oras):
centroids[i] = np.vstack(np.hsplit(ora.getIntArrays(),numClusters))
estimator[i] = KMeans(n_clusters=numClusters,init=centroids,n_init=1)
assignment[i] = estimator.fit_predict(mixture)
centroids[i] = estimator.cluster_centers_
## Compute fitness
score = DaviesBouldin.DaviesBouldin(mixture,centroids,assignment)
ora.score=score.eval()
## Store best from this generation
for i in range(1,numOracles):
if oras[i].score<oras[best].score:
best=i
## Quantum Rotation Gate
for i in range(0,numOracles):
if i == best:
continue
oras[i].QuantumGateStep(oras[best])
## Collapse qubits
oras[i].collapse()
"""print "\n-------- It ",qGen_," ---------------"
for i,ora in enumerate(oras):
print "Score of Oracle",i," was ",ora.score"""
print '.', # simple "progress bar"
for i in range(1,numOracles):
if oras[i].score<oras[best].score:
best=i
print "\n\nBest Oracle was ",best," with score ",oras[best].score
for i,ora in enumerate(oras):
print "Score of Oracle",i," was ",ora.score
In [51]:
for i in range(0,5):
print oras[i].score
best=0
for i in range(1,numOracles):
if oras[i].score<oras[best].score:
best=i
print i, oras[i].score, oras[i-1].score, best
print "\n\nBest Oracle was ",best," with score ",oras[best].score
print oras[3].score,oras[4].score
In [674]:
a=np.complex(np.random.rand(),np.random.rand())
b=np.complex(np.random.rand(),np.random.rand())
print "raw:",a,b
a=a/(np.sqrt(2)*np.abs(a))
b=b/(np.sqrt(2)*np.abs(b))
print "normalized:",a,b
print "|a|^2 + |b|^2=",pow(np.abs(a),2)+pow(np.abs(b),2)
np.arctan(1)
Out[674]:
In [675]:
alpha=1/np.sqrt(2)
beta=1/np.sqrt(2)
qb=np.matrix([[alpha],[beta]])
angle=np.arctan(alpha / beta)
rot=np.matrix([[np.cos(angle),-np.sin(angle)],[np.sin(angle),np.cos(angle)]])
qb=rot*qb
alpha=qb.A1[0]
beta=qb.A1[0]
print alpha,beta
In [98]:
x=np.array([1.2,2.5,3.5])
x=np.around(x)
x=x.astype(int)
x
Out[98]:
In [15]:
from bitstring import BitArray
bar=BitArray(length=32)
bar.int=42
print bar.float
print int(bar.bin[0])+1,bar.bin[0]+1
In [16]:
x=np.linspace(-2*np.pi,2*np.pi,200)
y=np.arctan(x)
plt.plot(x,y)
plt.grid()
np.arctan(-np.inf)
In [53]:
from scipy import ndimage
from scipy import misc
l = misc.lena()
misc.imsave('lena.png', l) # uses the Image module (PIL)
lena = misc.imread('lena.png')
plt.imshow(lena)
print type(lena)
print lena.shape, lena.dtype
lena=np.concatenate(lena)
print lena.shape, type(lena)
print l
In [1]:
# K-Means
numClusters=24
initType='k-means++'
estimator = KMeans(n_clusters=numClusters,init=initType)
assignment=estimator.fit_predict(lena)
centroids=estimator.cluster_centers_
print assignment.shape
In [5]:
In [11]:
Out[11]: