/Users/eloi/anaconda2/lib/python2.7/site-packages/matplotlib/collections.py:590: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
if self._edgecolors == str('face'):
Train Error
0 X Y
1 3.084996 6 6
2 4.360477 6 18
3 2.503543 6 30
4 3.998490 6 42
5 8.079524 18 6
6 5.898015 18 18
7 4.644635 18 30
8 14.299352 18 42
9 0.868339 30 6
10 4.028435 30 18
11 0.797446 30 30
12 12.032358 30 42
13 4.164541 42 6
14 1.793049 42 18
15 0.995736 42 30
16 4.038379 42 42
17 8.166643 54 6
18 6.792805 54 18
19 9.392817 54 30
20 4.545266 54 42
/Users/eloi/anaconda2/lib/python2.7/site-packages/matplotlib/axes/_axes.py:475: UserWarning: No labelled objects found. Use label='...' kwarg on individual plots.
warnings.warn("No labelled objects found. "
Test Error
X_ Y_ X Y dists
0 14.308553 16.293247 12 12 4.874565
1 18.401630 20.670906 12 12 10.778009
2 16.302757 21.308799 12 12 10.255119
3 18.176911 20.036302 12 12 10.135896
4 14.754138 16.696002 12 12 5.444053
5 15.509394 21.806512 12 12 10.415543
6 15.253591 16.717142 12 12 5.730382
7 16.749648 15.611951 12 12 5.967021
8 6.070239 16.804960 12 24 9.323661
9 9.061325 18.984969 12 24 5.812602
10 10.657912 17.689283 12 24 6.451849
11 13.415846 18.643395 12 24 5.540562
12 10.533518 18.329067 12 24 5.857479
13 7.254158 15.245057 12 24 9.958516
14 -58.072918 -27.151223 12 36 94.330752
15 4.565683 34.498870 12 36 7.584356
16 4.132841 34.362164 12 36 8.035838
17 28.673597 17.827048 24 12 7.469739
18 27.711106 16.263875 24 12 5.652693
19 29.286012 18.938870 24 12 8.722949
20 28.573684 18.663960 24 12 8.082509
21 29.061878 16.632909 24 12 6.861957
22 30.963574 33.206535 24 24 11.543468
23 31.707040 33.524462 24 24 12.252096
24 30.542921 30.148046 24 24 8.978212
25 31.580970 33.390163 24 24 12.068400
26 30.357511 31.969723 24 24 10.194824
27 24.400505 40.623974 24 36 4.641287
28 19.858768 45.137874 24 36 10.032475
29 17.827395 42.289264 24 36 8.812259
30 12.416406 42.899492 24 36 13.482679
31 -9.008279 48.186400 24 36 35.186003
32 38.992256 14.526379 36 12 3.916145
33 39.301664 14.992458 36 12 4.455983
34 39.816281 14.762495 36 12 4.711197
35 37.680258 12.726947 36 12 1.830770
36 39.799657 12.815144 36 12 3.886110
37 39.593934 14.282916 36 12 4.257707
38 24.587220 49.307666 36 24 27.762016
39 30.593964 47.586638 36 24 24.198238
40 21.452502 39.433344 36 24 21.208909
41 29.669795 37.334131 36 24 14.760439
42 29.209573 36.787832 36 24 14.478900
43 37.934760 33.470467 36 24 9.666077
44 47.608681 9.519082 36 36 28.913673
45 48.302412 14.379541 36 36 24.875562
46 47.084063 9.148992 36 36 29.048805
47 47.246959 6.924696 36 36 31.174788
48 48.883563 12.819166 36 36 26.520506
49 45.273036 21.122000 48 12 9.520883
50 45.172722 20.807787 48 12 9.250438
51 44.648211 20.896652 48 12 9.507098
52 44.260202 21.290132 48 12 10.014621
53 48.130472 20.285250 48 12 8.286277
54 46.242247 28.002712 48 36 8.188181
55 44.286912 29.322258 48 36 7.640632
56 48.351893 28.453325 48 36 7.554874
57 44.035793 29.549279 48 36 7.571443
58 50.975291 34.979545 48 36 3.145423