7.9 Laminar Flow in Valves, Fittings, and Pipe

SAE 30 oil at 100 deg F flows through a 5" schedule 40 pipe at 400 gal/min.

There is a sketch in the Crane document of the system.

Find the velocity in feet/second and the pressure drop.


In [1]:
from fluids.units import *
from math import pi
from fluids.constants import g
g = g*u.m/u.s**2

dH = 50*u.foot
L = (175+50+75)*u.foot
mu = 130*u.cP
rho = (62.364*0.87)*u.lb/u.ft**3
NPS, Di, Do, t = nearest_pipe(Do=5*u.inch, schedule='40')

Q = 400*u.gallon/u.min
A = 0.25*pi*Di**2

v = Q/A
Re = rho*v*Di/mu
fd = friction_factor(Re=Re, eD=0.0018*u.inch/Di)
ft = ft_Crane(Di)

K_gate = K_gate_valve_Crane(D1=Di, D2=Di, fd=ft, angle=0.0*u.degrees)
K_angle = K_angle_valve_Crane(D1=Di, D2=Di, fd=ft, style=1)
K_elbow = bend_rounded(Di=Di, bend_diameters=1, angle=90*u.degrees, Re=Re, method='Crane')

K_tot = K_elbow + K_gate + K_angle
K_tot += K_from_f(fd=fd, L=L, D=Di)

dP = dP_from_K(K=K_tot, rho=rho, V=v) + rho*g*dH
dP.to(u.psi), v.to(u.foot/u.s)


Out[1]:
(26.063989664869815 <Unit('pound_force_per_square_inch')>,
 6.414177533606955 <Unit('foot / second')>)

Intermediate calculations


In [2]:
K_gate/ft, K_angle/ft, K_elbow/ft


Out[2]:
(8.0 <Unit('dimensionless')>,
 150.0 <Unit('dimensionless')>,
 20.00000000000006 <Unit('dimensionless')>)

In [3]:
K_tot


Out[3]:
\[30.280117239939614\ dimensionless\]

In [4]:
v.to(u.ft/u.s)


Out[4]:
\[6.414177533606955\ foot/second\]

In [5]:
fd, ft


Out[5]:
(0.038600064113563516 <Unit('dimensionless')>,
 0.01543941031464228 <Unit('dimensionless')>)

Proof system is laminar


In [6]:
Re.to(u.dimensionless)


Out[6]:
\[1675.616699190696\ dimensionless\]