https://projecteuler.net/problem=9
A Pythagorean triplet is a set of three natural numbers, $a < b < c$, for which,
$$a^2 + b^2 = c^2$$For example, $3^2 + 4^2 = 9 + 16 = 25 = 5^2$.
There exists exactly one Pythagorean triplet for which $a + b + c = 1000$. Find the product abc.
In [13]:
pythtrip = [a+b+c for a in range(1,500) for b in range(1,500) for c in range(1,500) if a**2+b**2==c**2]
if 1000 in pythtrip:
print(pythtrip.index(1000))
In [14]:
pythtriptup = [(a,b,c) for a in range(1,500) for b in range(1,500) for c in range(1,500) if a**2+b**2==c**2]
print(pythtriptup[463])
In [15]:
print(pythtriptup[463][0]*pythtriptup[463][1]*pythtriptup[463][2])
In [ ]:
# This cell will be used for grading, leave it at the end of the notebook.