In [ ]:
import sys
sys.path.append('../')
from numpy import *
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
from ML import MLP
In [ ]:
# We load the data to be regressed
data = load("../Data/ML/Mars_Far.npy")
In [ ]:
'''
Here we instantiate a multi-layer perceptron with 4 hidden layers,
each with __ neurons (features). We also state the input columns
and output columns.
'''
iin = [0,1,2,3,4] # Input the state
iout = [5,6] # Target the controls
layers = [20,20] # Hidden layer structure
# Instantiate the artificial neural network
net1 = MLP("Mars_Far", "../Data/ML/")
net1.build(len(iin), len(iout), layers)
net1.scale(data, iin, iout)
In [ ]:
dps = data[:3,iin]
net1.predict(dps)
In [ ]: