In [4]:
%load_ext autoreload
%autoreload 2
In [5]:
import matplotlib.pyplot as plt
%matplotlib inline
In [6]:
import numpy as np
import tempfile
import tensorflow as tf
from tf_rl.controller import DiscreteDeepQ, HumanController
from tf_rl.simulation import KarpathyGame
from tf_rl import simulate
from tf_rl.models import MLP
In [7]:
LOG_DIR = tempfile.mkdtemp()
print(LOG_DIR)
In [8]:
from tf_rl.simulation import DiscreteHill
In [9]:
# Tensorflow business - it is always good to reset a graph before creating a new controller.
tf.ops.reset_default_graph()
session = tf.InteractiveSession()
# This little guy will let us run tensorboard
# tensorboard --logdir [LOG_DIR]
journalist = tf.train.SummaryWriter(LOG_DIR)
# Brain maps from observation to Q values for different actions.
# Here it is a done using a multi layer perceptron with 2 hidden
# layers
brain = MLP([4,], [10, 4],
[tf.tanh, tf.identity])
# The optimizer to use. Here we use RMSProp as recommended
# by the publication
optimizer = tf.train.RMSPropOptimizer(learning_rate= 0.001, decay=0.9)
# DiscreteDeepQ object
current_controller = DiscreteDeepQ(4, 4, brain, optimizer, session,
discount_rate=0.9, exploration_period=100, max_experience=10000,
store_every_nth=1, train_every_nth=4, target_network_update_rate=0.1,
summary_writer=journalist)
session.run(tf.initialize_all_variables())
session.run(current_controller.target_network_update)
# graph was not available when journalist was created
journalist.add_graph(session.graph_def)
In [10]:
performances = []
try:
for game_idx in range(10000):
game = DiscreteHill()
game_iterations = 0
observation = game.observe()
while game_iterations < 50 and not game.is_over():
action = current_controller.action(observation)
reward = game.collect_reward(action)
game.perform_action(action)
new_observation = game.observe()
current_controller.store(observation, action, reward, new_observation)
current_controller.training_step()
observation = new_observation
game_iterations += 1
performance = float(game_iterations - (game.shortest_path)) / game.shortest_path
performances.append(performance)
if game_idx % 100 == 0:
print "\rGame %d: iterations before success %d." % (game_idx, game_iterations),
print "Pos: %s, Target: %s" % (game.position, game.target),
except KeyboardInterrupt:
print "Interrupted"
In [11]:
N = 500
smooth_performances = [float(sum(performances[i:i+N])) / N for i in range(0, len(performances) - N)]
plt.plot(range(len(smooth_performances)), smooth_performances)
Out[11]:
In [19]:
np.average(performances[-1000:])
Out[19]:
In [231]:
x = brain.layers[0].Ws[0].eval()
import matplotlib.pyplot as plt
%matplotlib inline
plt.matshow(x)
plt.colorbar()
Out[231]:
In [138]:
brain.input_layer.b.eval()
Out[138]:
In [88]:
game.collect_reward(0)
Out[88]:
In [7]:
x = tf.Variable(tf.zeros((5,5)))
In [8]:
tf.clip_by_norm(x, 5)
Out[8]:
In [ ]: