In [1]:
import mxnet as mx
In [ ]:
# Data Perpare
mx.recordio.MXIndexedRecordIO # create empty .rec
mx.recordio.IRHeader # label
mx.recordio.pack_img # pack img with label
mx.io.ImageRecordIter # read
In [ ]:
# Model definition
mx.sym.Variable
# data = mx.sym.Variable('data')
# out = VGG(data)
mx.sym.Convolution
mx.sym.BatchNorm
mx.sym.Activation
mx.sym.LinearRegressionOutput
mx.sym.reshape
mx.sym.transpose
mx.sym.split
mx.sym.MakeLoss
mx.sym.Group
mx.sym.BlockGrad
# if sym is a symbol
sym = mx.sym.Variable('someVar')
sym.get_internals
sym.list_arguments
sym.list_outputs
In [ ]:
# Model Training/Testing
mx.model.load_checkpoint
# to bind mem to sym
mx.mod.Module
# for metric
mx.metric.create
# save a model
mx.callback.do_checkpoint
# print speed and print metric
mx.callback.Speedometer
# learning rate scheduler
mx.lr_scheduler.FactorScheduler
# param init
mx.init
# for monitor (debugging)
mx.mon.Monitor
In [6]: