Links zu Dokumentationen/Tutorials für IPython/Python/numpy/matplotlib/git sowie die Sourcodes findet ihr im GitHub Repo.


In [1]:
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

Implizit Two Step Max Order


In [2]:
max_order1 = np.loadtxt('data/ex16_impl_max_order_1.out')
time = max_order1[:,0]
V1 = max_order1[:,1]
V2 = max_order1[:,2]

In [3]:
plt.plot(time, V1)
plt.ylabel(r'$V_{1}(t)$')
plt.xlabel(r'$t$')
plt.grid()



In [4]:
plt.plot(time[:100], V1[:100])
plt.ylabel(r'$V_{1}(t)$')
plt.xlabel(r'$t$')
plt.grid()



In [5]:
max_ordere1 = np.loadtxt('data/ex16_impl_max_order_e1.out')
time = max_ordere1[:,0]
V1 = max_ordere1[:,1]
V2 = max_ordere1[:,2]

In [6]:
plt.plot(time, V1)
plt.ylabel(r'$V_{1}(t)$')
plt.xlabel(r'$t$')
plt.grid()



In [7]:
max_ordere1 = np.loadtxt('data/ex16_impl_max_order_e2.out')
time = max_ordere1[:,0]
V1 = max_ordere1[:,1]
V2 = max_ordere1[:,2]

In [8]:
plt.plot(time, V1)
plt.ylabel(r'$V_{1}(t)$')
plt.xlabel(r'$t$')
plt.grid()



In [9]:
max_ordere3 = np.loadtxt('data/ex16_impl_max_order_e3.out')
time = max_ordere3[:,0]
V1 = max_ordere3[:,1]
V2 = max_ordere3[:,2]

In [10]:
plt.plot(time, V1)
plt.ylabel(r'$V_{1}(t)$')
plt.xlabel(r'$t$')
plt.grid()



In [11]:
plt.plot(time[:100000], V1[:100000])
plt.ylabel(r'$V_{1}(t)$')
plt.xlabel(r'$t$')
plt.grid()


Implizit Euler


In [12]:
impl_eul1 = np.loadtxt('../ueb3/data/ex14_impl_eul_1.out')
time = impl_eul1[:,0]
V1 = impl_eul1[:,1]
V2 = impl_eul1[:,2]

In [13]:
plt.plot(time, V1)
plt.ylabel(r'$V_{1}(t)$')
plt.xlabel(r'$t$')
plt.grid()



In [14]:
plt.plot(time[:100], V1[:100])
plt.ylabel(r'$V_{1}(t)$')
plt.xlabel(r'$t$')
plt.grid()



In [15]:
impl_eul_e1 = np.loadtxt('../ueb3/data/ex14_impl_eul_e-1.out')
time = impl_eul_e1[:,0]
V1 = impl_eul_e1[:,1]
V2 = impl_eul_e1[:,2]

In [16]:
plt.plot(time, V1)
plt.ylabel(r'$V_{1}(t)$')
plt.xlabel(r'$t$')
plt.grid()



In [17]:
plt.plot(time[:1000], V1[:1000])
plt.ylabel(r'$V_{1}(t)$')
plt.xlabel(r'$t$')
plt.grid()



In [18]:
impl_eul_e2 = np.loadtxt('../ueb3/data/ex14_impl_eul_e-2.out')
time = impl_eul_e2[:,0]
V1 = impl_eul_e2[:,1]
V2 = impl_eul_e2[:,2]

In [19]:
plt.plot(time, V1)
plt.ylabel(r'$V_{1}(t)$')
plt.xlabel(r'$t$')
plt.grid()



In [20]:
plt.plot(time[:10000], V1[:10000])
plt.ylabel(r'$V_{1}(t)$')
plt.xlabel(r'$t$')
plt.grid()



In [21]:
impl_eul_e3 = np.loadtxt('../ueb3/data/ex14_impl_eul_e-3.out')
time = impl_eul_e3[:,0]
V1 = impl_eul_e3[:,1]
V2 = impl_eul_e3[:,2]

In [22]:
plt.plot(time, V1)
plt.ylabel(r'$V_{1}(t)$')
plt.xlabel(r'$t$')
plt.grid()



In [23]:
plt.plot(time[:100000], V1[:100000])
plt.ylabel(r'$V_{1}(t)$')
plt.xlabel(r'$t$')
plt.grid()


Implizit MP


In [24]:
impl_mp_1 = np.loadtxt('../ueb3/data/ex14_impl_mp_1.out')
time = impl_mp_1[:,0]
V1 = impl_mp_1[:,1]

In [25]:
plt.plot(time, V1)
plt.ylabel(r'$V_{1}(t)$')
plt.xlabel(r'$t$')
plt.grid()



In [26]:
impl_mp_e1 = np.loadtxt('../ueb3/data/ex14_impl_mp_e-1.out')
time = impl_mp_e1[:,0]
V1 = impl_mp_e1[:,1]

In [27]:
plt.plot(time, V1)
plt.ylabel(r'$V_{1}(t)$')
plt.xlabel(r'$t$')
plt.grid()



In [28]:
impl_mp_e2 = np.loadtxt('../ueb3/data/ex14_impl_mp_e-2.out')
time = impl_mp_e2[:,0]
V1 = impl_mp_e2[:,1]
V2 = impl_mp_e2[:,2]

In [29]:
plt.plot(time, V1)
plt.ylabel(r'$V_{1}(t)$')
plt.xlabel(r'$t$')
plt.grid()



In [30]:
impl_mp_e3 = np.loadtxt('../ueb3/data/ex14_impl_mp_e-3.out')
time = impl_mp_e3[:,0]
V1 = impl_mp_e3[:,1]
V2 = impl_mp_e3[:,2]

In [31]:
plt.plot(time, V1)
plt.ylabel(r'$V_{1}(t)$')
plt.xlabel(r'$t$')
plt.grid()



In [32]:
plt.plot(time[:100000], V1[:100000])
plt.ylabel(r'$V_{1}(t)$')
plt.xlabel(r'$t$')
plt.grid()



In [ ]: