In [1]:
y <- rnorm(10)
y


Out[1]:
  1. -0.427941557436343
  2. 1.10644535582692
  3. 1.34039435678912
  4. 0.294523204730715
  5. 0.0187115904027036
  6. 0.467594295491113
  7. 0.688993085121717
  8. -1.17501892889466
  9. -0.0823682094795584
  10. 0.0193519484585404

In [2]:
quantile(y, type=1)


Out[2]:
0%
-1.17501892889466
25%
-0.0823682094795584
50%
0.0193519484585404
75%
0.688993085121717
100%
1.34039435678912

In [3]:
quantile(y, type=2)


Out[3]:
0%
-1.17501892889466
25%
-0.0823682094795584
50%
0.156937576594628
75%
0.688993085121717
100%
1.34039435678912

In [4]:
quantile(y, type=3)


Out[4]:
0%
-1.17501892889466
25%
-0.427941557436343
50%
0.0193519484585404
75%
0.688993085121717
100%
1.34039435678912

In [5]:
quantile(y, type=4)


Out[5]:
0%
-1.17501892889466
25%
-0.255154883457951
50%
0.0193519484585404
75%
0.578293690306415
100%
1.34039435678912

In [6]:
quantile(y, type=5)


Out[6]:
0%
-1.17501892889466
25%
-0.0823682094795584
50%
0.156937576594628
75%
0.688993085121717
100%
1.34039435678912

In [7]:
quantile(y, type=6)


Out[7]:
0%
-1.17501892889466
25%
-0.168761546468755
50%
0.156937576594628
75%
0.793356152798018
100%
1.34039435678912

In [8]:
quantile(y, type=7)


Out[8]:
0%
-1.17501892889466
25%
-0.0570982595089929
50%
0.156937576594628
75%
0.633643387714066
100%
1.34039435678912

In [9]:
quantile(y, type=8)


Out[9]:
0%
-1.17501892889466
25%
-0.111165988475957
50%
0.156937576594628
75%
0.72378077434715
100%
1.34039435678912

In [10]:
quantile(y, type=9)


Out[10]:
0%
-1.17501892889466
25%
-0.103966543726857
50%
0.156937576594628
75%
0.715083852040792
100%
1.34039435678912

In [ ]: