In [1]:
boottest2.med <- function(x, y, B) {
n1 <- length(x)
n2 <- length(y)
v <- median(y) - median(x)
z <- c(x,y)
counter <- 0
teststatall <- rep(0,B)
for(i in 1:B) {
xstar <- sample(z, n1, replace=TRUE)
ystar <- sample(z, n2, replace=TRUE)
vstar <- median(ystar) - median(xstar)
if (vstar >= v) { counter <- counter + 1 }
teststatall[i] <- vstar
}
pvalue <- counter/B
list(origtest=v, pvalue=pvalue, teststatall=teststatall)
}
In [2]:
rcn <- function(n, eps, sigmac) {
ind <- rbinom(n, 1, eps)
x <- rnorm(n)
rcn <- x*(1-ind)+sigmac*x*ind
rcn
}
In [3]:
w <- rcn(30, 0.20, 4)
x <- 10 * w[1:15] + 100
y <- 10 * w[16:30] + 120
In [4]:
boottest2.med(x, y, 3000)$pvalue
Out[4]:
In [ ]: