In [1]:
# Not a great way to build a suffix array, but we'll use it
# for the small examples here
def naiveBuildSA(t):
    satups = sorted([(t[i:], i) for i in range(len(t))])
    return list(map(lambda x: x[1], satups))

In [2]:
# Simple function calculating LCP of two string
def lcp(x, y):
    for i in range(min(len(x), len(y))):
        if x[i] != y[i]: return i
    return min(len(x), len(y))

In [3]:
lcp('start', 'stark')


Out[3]:
4

In [4]:
lcp('start', 'star')


Out[4]:
4

In [5]:
lcp('yes', 'no')


Out[5]:
0

In [6]:
# Naive way to calculate LCP1 array given string and its suffix array
def naiveLCP1(t, sa):
    return [ lcp(t[sa[i]:], t[sa[i+1]:]) for i in range(len(sa)-1) ]

In [7]:
t = 'abaaba$'
naiveLCP1(t, naiveBuildSA(t))


Out[7]:
[0, 1, 1, 3, 0, 2]

In [8]:
t = 'abracadabracada$'
naiveLCP1(t, naiveBuildSA(t))


Out[8]:
[0, 1, 8, 1, 5, 1, 3, 0, 7, 0, 4, 0, 2, 0, 6]

In [9]:
naiveBuildSA(t)


Out[9]:
[15, 14, 7, 0, 10, 3, 12, 5, 8, 1, 11, 4, 13, 6, 9, 2]

In [10]:
# Calculates (l, c) LCPs and (c, r) LCPs from LCP1 array.  Returns pair where
# first element is list of LCPs for (l, c) combos and second is LCPs for
# (c, r) combos.
def precomputeLcps(lcp1):
    llcp, rlcp = [None] * len(lcp1), [None] * len(lcp1)
    lcp1 += [0]
    def precomputeLcpsHelper(l, r):
        if l == r-1: return lcp1[l]
        c = (l + r) // 2
        llcp[c-1] = precomputeLcpsHelper(l, c)
        rlcp[c-1] = precomputeLcpsHelper(c, r)
        return min(llcp[c-1], rlcp[c-1])
    precomputeLcpsHelper(0, len(lcp1))
    return llcp, rlcp

In [11]:
precomputeLcps(naiveLCP1(t, naiveBuildSA(t)))


Out[11]:
([0, 0, 8, 0, 5, 1, 3, 0, 7, 0, 4, 0, 2, 0, 6],
 [1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])