Untitled



In [23]:
import numpy as np
from ContNoRegret.Domains import unitbox
from ContNoRegret.LossFunctions import PolynomialLossFunction, random_PolynomialLosses
from scipy.stats import norm, uniform
dom = unitbox(2)
tmpfolder = '/Volumes/tmp/'
M = 10
L = 5
T = 500
nus = [1.05, 2]

In [24]:
while len(lossfuncs) < T:
    tmpfuncs = np.array(random_PolynomialLosses(dom, 10, M, L, 4, [0,1,2,3,4], dist=uniform(loc=0, scale=3)))
    normbounds = {nu: np.array([lossfunc.norm(2/nu, tmpfolder=tmpfolder) for lossfunc in tmpfuncs]) for nu in nus}
    Ms = {nu: np.array(normbounds[nu]) for nu in nus}
    for i in range(len(normbounds)):
        ratio = normbounds[nus[0]][i]/normbounds[nus[1]][i]
        if ratio > 1.75:
            lossfuncs.append(tmpfuncs[i])
            print(len(lossfuncs))


201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
/opt/local/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/IPython/kernel/__main__.py:6: RuntimeWarning: invalid value encountered in double_scalars
/opt/local/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/IPython/kernel/__main__.py:6: RuntimeWarning: invalid value encountered in double_scalars
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
/opt/local/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/IPython/kernel/__main__.py:6: RuntimeWarning: invalid value encountered in double_scalars
/opt/local/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/IPython/kernel/__main__.py:6: RuntimeWarning: invalid value encountered in double_scalars
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
/opt/local/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/IPython/kernel/__main__.py:6: RuntimeWarning: invalid value encountered in double_scalars

In [26]:
coeffs = [list(lf.coeffs) for lf in lossfuncs]
expos = [lf.exponents for lf in lossfuncs]
with open('coeff_expos_n2.py', 'w') as f:
    f.write('coeffs = ' + str(coeffs) + '\n' + 'exponents = ' + str(expos))

In [9]:
[(lossfunc.norm(1.05, tmpfolder=tmpfolder), lossfunc.norm(2, tmpfolder=tmpfolder)) for lossfunc in lossfuncs]


Out[9]:
[(0.031938465259162663, 0.067454455675304489),
 (0.014433357847643279, 0.031542985813273069),
 (0.013894345062018915, 0.029345759551757347),
 (0.024812292248224059, 0.052231451529516068),
 (0.010930993861242791, 0.028069393813845496),
 (0.011124609412963508, 0.028566573781076392),
 (0.0230449009782949, 0.047141297838764577),
 (0.017554728909267608, 0.035239457749515736),
 (0.017498013294863606, 0.036834932876678883),
 (0.033314563170601309, 0.07057553257702838)]

In [19]:
from coeff_expos_n2 import coeffs,exponents

In [12]:
[lossfunc.coeffs for lossfunc in lossfuncs]


Out[12]:
[array([ -7.15378450e-07,  -2.15176337e+00,  -2.56553649e-01]),
 array([ -1.38884691e+02,   2.29742538e-12]),
 array([ -4.70784903e+02,   1.99297112e-16]),
 array([ -1.97731168e-12,   2.01804453e+02,   1.20161595e+02])]

In [21]:
cfs[0]


Out[21]:
[52.942672264359736, -8.743625497449273e-13, 51.122271544881364]

In [22]:
xpnts[0]


Out[22]:
[(4, 2), (0, 0), (4, 3)]

In [25]:
lossfuncs


Out[25]:
[<ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55a668>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c563a58>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55aa90>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55add8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c563550>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c563780>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55ac50>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c563c50>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55a400>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55a860>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55abe0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c563f98>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5639b0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5632e8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55a080>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55a978>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c563940>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55af28>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c563048>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c563898>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ca748>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed4a90>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ca080>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ca400>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5b3f28>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5b3a90>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5cab38>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5b3a20>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ca908>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed4ef0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5b3ef0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ca8d0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5b3c18>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed4da0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ca5f8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ca240>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5b3dd8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ca2b0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed4d68>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed4a58>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed46d8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed4390>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ca438>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5b3b00>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5b3ac8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5cac18>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ca0f0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5b3b38>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ce4a8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ca470>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ce2e8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5cacf8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ce668>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed4b00>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed4f60>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ce4e0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ce940>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5b3f98>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ca6d8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ce978>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5cee10>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed4278>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5b3eb8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5caf28>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ca198>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ced68>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ce828>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ce898>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ca128>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed4b70>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ca7b8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ca278>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed44e0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5cef28>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ce5f8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5cac88>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5cec88>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ca320>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da7b8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed4160>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ce550>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ca358>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da160>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5b3cf8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da710>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da278>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ce630>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5cecf8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5b3e80>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da4a8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5b38d0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5dac18>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ce128>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ce198>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da6d8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ceeb8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5dab38>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed44a8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da630>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ca4a8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ce6d8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5dab70>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da1d0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da9b0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5cef60>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5caa90>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5caf60>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da048>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ca160>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5b3d30>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da828>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5b3e48>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ceb38>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ca208>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed49b0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da0f0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ca940>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed4cf8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ceda0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed4c88>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da978>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5e5128>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5dadd8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5b3da0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da9e8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5e5860>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5e5ba8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da5f8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5e58d0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ca0b8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ce710>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ca1d0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5e55f8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da400>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5e5710>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5e56a0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5e5748>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5b3d68>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ca518>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ce748>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da940>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5e5470>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da518>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5daf98>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ce908>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5e5a20>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5e5f98>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5e5240>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5e5630>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da8d0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5dad30>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f22e8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5dacf8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5e53c8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f24a8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da668>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5cee48>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2630>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5e5048>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5e5be0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da240>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5e5550>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5e5898>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ceb70>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f25f8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5e5da0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5e5a58>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5e5518>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2940>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ca390>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2ac8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5daac8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2748>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da390>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed4e48>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da3c8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5dae10>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5e5fd0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2588>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5cad68>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5e5d30>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5e5978>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ced30>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2da0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5e5e10>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2cf8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ce0f0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da128>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2b00>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5e54e0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5eb588>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2860>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2a20>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2f28>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2e48>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da588>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5eb438>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5eb780>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da550>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2438>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c563da0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c283a58>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed4e10>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed4f28>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c275e80>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c275c18>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c275d30>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da6a0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c8e80>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da780>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c8e10>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c283be0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c8dd8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c2750b8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1a58>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da2e8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c275828>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed4470>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1b70>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c8550>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed4d30>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da5c0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da2b0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed4978>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1c18>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c283ac8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed4c50>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5dafd0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1630>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c80b8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c283400>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1f28>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da438>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c283668>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1358>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1588>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c275a90>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed4ac8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c283ba8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1128>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5da0b8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c283f98>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c283748>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1fd0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5b3978>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c283240>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c82b0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c563470>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1240>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55a320>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c283048>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c10f0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1828>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1278>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55ada0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5b3c88>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55aac8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c275ba8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed42e8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55afd0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c563400>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55af98>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5b3cc0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55aa58>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55a390>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c275f28>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55a5c0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c10b8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55a3c8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55a828>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c640ac8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1b00>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c283908>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1048>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55a438>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1f60>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c2836a0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c6409b0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c8e48>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c15f8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55a1d0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c2831d0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c275f60>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55a780>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55aba8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c640908>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c640e48>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c640f98>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c563b00>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55a5f8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c6400b8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1940>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1eb8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55acc0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55a6a0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c640748>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c48fdd8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c14a8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c275a20>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1da0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c2832b0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1908>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c640cf8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c2759e8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c640c88>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c48fc88>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1e10>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1160>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1198>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1390>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5639e8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c563d30>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1a90>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55a4e0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c48fda0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c48fe48>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c48f860>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c48feb8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55a898>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c48f748>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2be0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55a8d0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55ab00>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c48ffd0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c640f60>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c48fba8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2c88>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c48f6a0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1d68>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55a160>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2710>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c640da0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c48fd68>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2898>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c48f668>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1320>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c640c18>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c3b96d8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c3b9550>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c48f7b8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c3b9080>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2208>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c3b9240>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2390>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c275898>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2780>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c48f9b0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2198>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c640630>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c629518>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1860>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c3b9cf8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c48fa90>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1e80>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c48fef0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c640f28>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c629160>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1438>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c629860>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2e80>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2128>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c6298d0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1c88>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2eb8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1ac8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55ae10>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c629828>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c3b9a58>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2c50>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c629320>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c6294a8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c629d68>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c640c50>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c6297f0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f27b8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c629710>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c629a90>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c64a048>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c48f978>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c629ac8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c629b00>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c64a198>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c3b9898>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2a58>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f27f0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5eb6a0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c64aac8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c2835f8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c6292e8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x109948080>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c64a128>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c629da0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c629780>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2908>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c6294e0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c3b9828>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c629278>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2978>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c64af28>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c6297b8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c64a518>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c64a828>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c629748>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c64a710>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c64a160>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c64ac18>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c64aa20>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c64a630>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c64a978>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c629f98>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c629400>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1710>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c3b9438>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c64a5c0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c64ae10>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c64a438>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c64a1d0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c64a6d8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2278>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c64aeb8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c48f780>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c629a20>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f2d68>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5635f8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f20b8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c48f710>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c629128>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c563748>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c64a550>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c64ada0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c64acc0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c629e80>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c629e10>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c48ff98>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c629940>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c629390>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5eb390>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c3b9518>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c64ae80>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c6296d8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c640e10>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c629ba8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c48fa20>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c81d0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5eb630>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c8eb8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c48fe10>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c8fd0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c640e80>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5ebe10>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c48fc18>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c640898>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c629e48>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5eb898>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55a240>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c629470>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55a518>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed4dd8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c640d68>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55af60>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c640a58>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5f20f0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c48fa58>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55aa20>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c64a4a8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c85c0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c8d30>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c5eb7f0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c640cc0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed4be0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55acf8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55a2e8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed45f8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c6407b8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c640940>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55ac88>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55a9e8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1cc0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c640518>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed4550>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c629cf8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1668>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed4cc0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c629d30>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c18d0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55a358>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c6291d0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c64a860>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed4c18>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x108ed4ba8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c275a58>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1080>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c64ae48>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c64a6a0>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1c50>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c275e10>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c55a128>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c4c1780>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c275dd8>,
 <ContNoRegret.LossFunctions.PolynomialLossFunction at 0x10c48fc50>]

In [27]:
from coeff_expos_n2 import coeffs,exponents

In [29]:
lossfuncs = [PolynomialLossFunction(dom, coeff,expo) for coeff,expo in zip(coeffs,exponents)]

In [32]:
lossfuncs[0].exponents


Out[32]:
[(4, 2), (0, 0), (4, 3)]

In [ ]: