tensorboard_basic



In [1]:
'''
Graph and Loss visualization using Tensorboard.
This example is using the MNIST database of handwritten digits
(http://yann.lecun.com/exdb/mnist/)

Author: Aymeric Damien
Project: https://github.com/aymericdamien/TensorFlow-Examples/
'''


Out[1]:
'\nGraph and Loss visualization using Tensorboard.\nThis example is using the MNIST database of handwritten digits\n(http://yann.lecun.com/exdb/mnist/)\n\nAuthor: Aymeric Damien\nProject: https://github.com/aymericdamien/TensorFlow-Examples/\n'

In [2]:
import tensorflow as tf

# Import MINST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)


Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz

In [3]:
# Parameters
learning_rate = 0.01
training_epochs = 25
batch_size = 100
display_step = 1
logs_path = '/tmp/tensorboard/example'

# tf Graph Input
# mnist data image of shape 28*28=784
x = tf.placeholder(tf.float32, [None, 784], name='InputData')
# 0-9 digits recognition => 10 classes
y = tf.placeholder(tf.float32, [None, 10], name='LabelData')

# Set model weights
W = tf.Variable(tf.zeros([784, 10]), name='Weights')
b = tf.Variable(tf.zeros([10]), name='Bias')

In [9]:
# Construct model and encapsulating all ops into scopes, making
# Tensorboard's Graph visualization more convenient
with tf.name_scope('Model'):
    # Model
    pred = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax
with tf.name_scope('Loss'):
    # Minimize error using cross entropy
    cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=1))
with tf.name_scope('SGD'):
    # Gradient Descent
    optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
with tf.name_scope('Accuracy'):
    # Accuracy
    acc = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
    acc = tf.reduce_mean(tf.cast(acc, tf.float32))

# Initializing the variables
init = tf.global_variables_initializer()

# Create a summary to monitor cost tensor
tf.summary.scalar("loss", cost)
# Create a summary to monitor accuracy tensor
tf.summary.scalar("accuracy", acc)
# Merge all summaries into a single op
merged_summary_op = tf.summary.merge_all()

# Launch the graph
with tf.Session() as sess:
    sess.run(init)

    # op to write logs to Tensorboard
    summary_writer = tf.summary.FileWriter(logs_path, graph=tf.get_default_graph())

    # Training cycle
    for epoch in range(training_epochs):
        avg_cost = 0.
        total_batch = int(mnist.train.num_examples/batch_size)
        # Loop over all batches
        for i in range(total_batch):
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            # Run optimization op (backprop), cost op (to get loss value)
            # and summary nodes
            _, c, summary = sess.run([optimizer, cost, merged_summary_op],
                                     feed_dict={x: batch_xs, y: batch_ys})
            # Write logs at every iteration
            summary_writer.add_summary(summary, epoch * total_batch + i)
            # Compute average loss
            avg_cost += c / total_batch
        # Display logs per epoch step
        if (epoch+1) % display_step == 0:
            print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)

    print "Optimization Finished!"

    # Test model
    # Calculate accuracy
    print "Accuracy:", acc.eval({x: mnist.test.images, y: mnist.test.labels})

In [4]:
# Loss and accuracy Visualization



In [6]:
# Graph Visualization

In [ ]: