In [3]:
from concise.data import attract, encode
In [50]:
from plotnine import *
In [18]:
import numpy as np
import pandas as pd
In [42]:
pwm_list = attract.get_pwm_list(attract.get_metadata().PWM_id.unique())
pwm_list_e = encode.get_pwm_list(encode.get_metadata().motif_name.unique())
In [43]:
pwm_list[0].pwm.shape
Out[43]:
In [44]:
pwmc = np.concatenate([pwm.pwm for pwm in pwm_list], axis=0)
pwmce = np.concatenate([pwm.pwm for pwm in pwm_list_e], axis=0)
In [46]:
dfa = pd.DataFrame(pwmc, columns = ["A", "C", "G", "T"])
dfae = pd.DataFrame(pwmce, columns = ["A", "C", "G", "T"])
In [48]:
dfa = pd.melt(dfa, var_name="base")
dfa["db"] = "attract"
dfae = pd.melt(dfae, var_name="base")
dfae["db"] = "encode"
df = pd.concat([dfa, dfae])
In [49]:
df
Out[49]:
In [67]:
df.groupby("db").count()
Out[67]:
In [62]:
ggplot(aes(x = "value", color = "base"), df) + \
geom_density() + \
facet_grid('db~.') + \
ylim((0, 8))
Out[62]:
In [ ]: