In [13]:
    
import plotly.graph_objs as go 
from plotly.offline import init_notebook_mode,iplot,plot
init_notebook_mode(connected=True)
    
    
Import pandas and read the csv file: 2014_World_Power_Consumption
In [2]:
    
import pandas as pd
    
In [3]:
    
df = pd.read_csv('2014_World_Power_Consumption')
    
Check the head of the DataFrame.
In [4]:
    
df.head()
    
    Out[4]:
Referencing the lecture notes, create a Choropleth Plot of the Power Consumption for Countries using the data and layout dictionary.
In [19]:
    
data = dict(
        type = 'choropleth',
        colorscale = 'Viridis',
        reversescale = True,
        locations = df['Country'],
        locationmode = "country names",
        z = df['Power Consumption KWH'],
        text = df['Country'],
        colorbar = {'title' : 'Power Consumption KWH'},
      ) 
layout = dict(title = '2014 Power Consumption KWH',
                geo = dict(showframe = False,projection = {'type':'Mercator'})
             )
    
In [20]:
    
choromap = go.Figure(data = [data],layout = layout)
plot(choromap,validate=False)
    
    Out[20]:
In [7]:
    
usdf = pd.read_csv('2012_Election_Data')
    
Check the head of the DataFrame.
In [8]:
    
usdf.head()
    
    Out[8]:
Now create a plot that displays the Voting-Age Population (VAP) per state. If you later want to play around with other columns, make sure you consider their data type. VAP has already been transformed to a float for you.
In [16]:
    
data = dict(type='choropleth',
            colorscale = 'Viridis',
            reversescale = True,
            locations = usdf['State Abv'],
            z = usdf['Voting-Age Population (VAP)'],
            locationmode = 'USA-states',
            text = usdf['State'],
            marker = dict(line = dict(color = 'rgb(255,255,255)',width = 1)),
            colorbar = {'title':"Voting-Age Population (VAP)"}
            )
    
In [17]:
    
layout = dict(title = '2012 General Election Voting Data',
              geo = dict(scope='usa',
                         showlakes = True,
                         lakecolor = 'rgb(85,173,240)')
             )
    
In [18]:
    
choromap = go.Figure(data = [data],layout = layout)
plot(choromap,validate=False)
    
    Out[18]: