In [9]:
file = "/root/git/SolarDataRESTfulAPI/testdata/h00t_1310160720_1406030410.csv"
url = "http://slb.nu/soldata/index.php?KEY=h00t&start=1310160720&stop=1406060410"
In [10]:
import pandas
In [18]:
df = pandas.read_csv(url,sep = ";",parse_dates=[[0, 1]],skiprows=8, header = None ,infer_datetime_format = True,na_values = [" "," "," "," ",""])
In [19]:
df
Out[19]:
0_1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
0
13-10-16 07:20
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
...
1
13-10-16 07:30
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
...
2
13-10-16 07:40
0
0
0
0
0
0
0
0
32
0
0
32
0
0
0
0
0
0
0
...
3
13-10-16 07:50
0
0
0
0
0
0
0
0
139
0
0
139
0
0
0
0
0
0
0
...
4
13-10-16 08:00
0
0
0
0
0
0
0
0
297
0
0
297
0
0
0
0
0
0
0
...
5
13-10-16 08:10
0
0
0
0
0
0
0
0
422
0
0
422
0
0
0
0
0
0
0
...
6
13-10-16 08:20
0
0
0
0
0
0
0
0
650
0
0
650
0
0
0
0
0
0
0
...
7
13-10-16 08:30
0
0
0
0
0
0
0
0
783
0
0
783
0
0
0
0
0
0
0
...
8
13-10-16 08:40
0
0
0
0
0
0
0
0
1181
0
0
1181
0
0
0
0
0
0
0
...
9
13-10-16 08:50
0
0
0
0
0
0
0
0
1217
0
0
1217
0
0
0
0
0
0
0
...
10
13-10-16 09:00
0
0
0
0
0
0
0
0
1486
0
0
1486
0
0
0
0
0
0
0
...
11
13-10-16 09:10
0
0
0
0
0
0
0
0
1821
0
0
1821
0
0
0
0
0
0
0
...
12
13-10-16 09:20
3338
0
0
0
0
0
0
0
0
0
0
3338
0
0
0
0
0
0
0
...
13
13-10-16 09:30
0
0
0
0
0
0
0
0
3338
0
0
3338
0
0
0
0
0
0
0
...
14
13-10-16 09:40
0
0
0
0
0
0
0
0
3937
0
0
3937
0
0
0
0
0
0
0
...
15
13-10-16 09:50
5545
0
0
0
0
0
0
0
0
0
0
5545
0
0
0
0
0
0
0
...
16
13-10-16 10:00
8112
0
0
0
0
0
0
0
0
0
0
8112
0
0
0
0
0
0
0
...
17
13-10-16 10:10
0
0
0
0
0
0
0
0
8112
0
0
8112
0
0
0
0
0
0
0
...
18
13-10-16 10:20
0
0
0
0
0
0
0
0
8646
0
0
8646
0
0
0
0
0
0
0
...
19
13-10-16 10:30
8337
0
0
0
0
0
0
0
0
0
0
8337
0
0
0
0
0
0
0
...
20
13-10-16 10:40
9243
0
0
0
0
0
0
0
0
0
0
9243
0
0
0
0
0
0
0
...
21
13-10-16 10:50
0
0
0
0
0
0
0
0
9243
0
0
9243
0
0
0
0
0
0
0
...
22
13-10-16 11:00
0
0
0
0
0
0
0
0
3623
0
0
3623
0
0
0
0
0
0
0
...
23
13-10-16 11:10
0
0
0
0
0
0
0
0
4487
0
0
4487
0
0
0
0
0
0
0
...
24
13-10-16 11:20
0
0
0
0
0
0
0
0
4201
0
0
4201
0
0
0
0
0
0
0
...
25
13-10-16 11:30
0
0
0
0
0
0
0
0
3759
0
0
3759
0
0
0
0
0
0
0
...
26
13-10-16 11:40
0
0
0
0
0
0
0
0
3693
0
0
3693
0
0
0
0
0
0
0
...
27
13-10-16 11:50
0
0
0
0
0
0
0
0
3501
0
0
3501
0
0
0
0
0
0
0
...
28
13-10-16 12:00
0
0
0
0
0
0
0
0
5241
0
0
5241
0
0
0
0
0
0
0
...
29
13-10-16 12:10
9600
0
0
0
0
0
0
0
0
0
0
9600
0
0
0
0
0
0
0
...
30
13-10-16 12:20
0
0
0
0
0
0
0
0
9600
0
0
9600
0
0
0
0
0
0
0
...
31
13-10-16 12:30
0
0
0
0
0
0
0
0
8126
0
0
8126
0
0
0
0
0
0
0
...
32
13-10-16 12:40
0
0
0
0
0
0
0
0
10770
0
0
10770
0
0
0
0
0
0
0
...
33
13-10-16 12:50
0
0
0
0
0
0
0
0
3107
0
0
3107
0
0
0
0
0
0
0
...
34
13-10-16 13:00
0
0
0
0
0
0
0
0
2331
0
0
2331
0
0
0
0
0
0
0
...
35
13-10-16 13:10
0
0
0
0
0
0
0
0
2212
0
0
2212
0
0
0
0
0
0
0
...
36
13-10-16 13:20
0
0
0
0
0
0
0
0
2557
0
0
2557
0
0
0
0
0
0
0
...
37
13-10-16 13:30
0
0
0
0
0
0
0
0
4100
0
0
4100
0
0
0
0
0
0
0
...
38
13-10-16 13:40
0
0
0
0
0
0
0
0
4684
0
0
4684
0
0
0
0
0
0
0
...
39
13-10-16 13:50
0
0
0
0
0
0
0
0
3176
0
0
3176
0
0
0
0
0
0
0
...
40
13-10-16 14:00
0
0
0
0
0
0
0
0
6930
0
0
6930
0
0
0
0
0
0
0
...
41
13-10-16 14:10
2039
0
0
0
0
0
0
0
0
0
0
2039
0
0
0
0
0
0
0
...
42
13-10-16 14:20
0
0
0
0
0
0
0
0
2039
0
0
2039
0
0
0
0
0
0
0
...
43
13-10-16 14:30
0
0
0
0
0
0
0
0
2102
0
0
2102
0
0
0
0
0
0
0
...
44
13-10-16 14:40
0
0
0
0
0
0
0
0
2047
0
0
2047
0
0
0
0
0
0
0
...
45
13-10-16 14:50
0
0
0
0
0
0
0
0
1771
0
0
1771
0
0
0
0
0
0
0
...
46
13-10-16 15:00
1528
0
0
0
0
0
0
0
0
0
0
1528
0
0
0
0
0
0
0
...
47
13-10-16 15:10
0
0
0
0
0
0
0
0
1528
0
0
1528
0
0
0
0
0
0
0
...
48
13-10-16 15:20
0
0
0
0
0
0
0
0
1302
0
0
1302
0
0
0
0
0
0
0
...
49
13-10-16 15:30
0
0
0
0
0
0
0
0
987
0
0
987
0
0
0
0
0
0
0
...
50
13-10-16 15:40
0
0
0
0
0
0
0
0
916
0
0
916
0
0
0
0
0
0
0
...
51
13-10-16 15:50
0
0
0
0
0
0
0
0
830
0
0
830
0
0
0
0
0
0
0
...
52
13-10-16 16:00
0
0
0
0
0
0
0
0
746
0
0
746
0
0
0
0
0
0
0
...
53
13-10-16 16:10
0
0
0
0
0
0
0
0
514
0
0
514
0
0
0
0
0
0
0
...
54
13-10-16 16:20
0
0
0
0
0
0
0
0
381
0
0
381
0
0
0
0
0
0
0
...
55
13-10-16 16:30
0
0
0
0
0
0
0
0
274
0
0
274
0
0
0
0
0
0
0
...
56
13-10-16 16:40
0
0
0
0
0
0
0
0
213
0
0
213
0
0
0
0
0
0
0
...
57
13-10-16 16:50
0
0
0
0
0
0
0
0
156
0
0
156
0
0
0
0
0
0
0
...
58
13-10-16 17:00
0
0
0
0
0
0
0
0
76
0
0
76
0
0
0
0
0
0
0
...
59
13-10-16 17:10
0
0
0
0
0
0
0
0
30
0
0
30
0
0
0
0
0
0
0
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
33535 rows × 87 columns
In [20]:
df.iloc[-100,2]
Out[20]:
nan
In [21]:
cl = pandas.read_csv(url,sep = ";", header = 6,error_bad_lines= False,na_values = [""],nrows=1)
In [22]:
cl
Out[22]:
KEY =>
Unnamed: 1
h00tM0Pac001
h00tM0Pac002
h00tM0Pac003
h00tM0Pac004
h00tM0Pac005
h00tM0Pac006
h00tM0Pac007
h00tM0Pac008
h00tM0Pac009
h00tM0Pac010
h00tM0Pac011
h00tM0PacTot
h00tMErro001
h00tMErro002
h00tMErro003
h00tMErro004
h00tMErro005
h00tMErro006
0
Date
Time
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
...
1 rows × 87 columns
In [23]:
cols = cl.keys()
In [24]:
cols = cols[1:]
In [25]:
col2 = cols.insert(-1,"NAN")
In [26]:
len(col2)
Out[26]:
87
In [27]:
df.columns = col2
In [28]:
df
Out[28]:
Unnamed: 1
h00tM0Pac001
h00tM0Pac002
h00tM0Pac003
h00tM0Pac004
h00tM0Pac005
h00tM0Pac006
h00tM0Pac007
h00tM0Pac008
h00tM0Pac009
h00tM0Pac010
h00tM0Pac011
h00tM0PacTot
h00tMErro001
h00tMErro002
h00tMErro003
h00tMErro004
h00tMErro005
h00tMErro006
h00tMErro007
0
13-10-16 07:20
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
...
1
13-10-16 07:30
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
...
2
13-10-16 07:40
0
0
0
0
0
0
0
0
32
0
0
32
0
0
0
0
0
0
0
...
3
13-10-16 07:50
0
0
0
0
0
0
0
0
139
0
0
139
0
0
0
0
0
0
0
...
4
13-10-16 08:00
0
0
0
0
0
0
0
0
297
0
0
297
0
0
0
0
0
0
0
...
5
13-10-16 08:10
0
0
0
0
0
0
0
0
422
0
0
422
0
0
0
0
0
0
0
...
6
13-10-16 08:20
0
0
0
0
0
0
0
0
650
0
0
650
0
0
0
0
0
0
0
...
7
13-10-16 08:30
0
0
0
0
0
0
0
0
783
0
0
783
0
0
0
0
0
0
0
...
8
13-10-16 08:40
0
0
0
0
0
0
0
0
1181
0
0
1181
0
0
0
0
0
0
0
...
9
13-10-16 08:50
0
0
0
0
0
0
0
0
1217
0
0
1217
0
0
0
0
0
0
0
...
10
13-10-16 09:00
0
0
0
0
0
0
0
0
1486
0
0
1486
0
0
0
0
0
0
0
...
11
13-10-16 09:10
0
0
0
0
0
0
0
0
1821
0
0
1821
0
0
0
0
0
0
0
...
12
13-10-16 09:20
3338
0
0
0
0
0
0
0
0
0
0
3338
0
0
0
0
0
0
0
...
13
13-10-16 09:30
0
0
0
0
0
0
0
0
3338
0
0
3338
0
0
0
0
0
0
0
...
14
13-10-16 09:40
0
0
0
0
0
0
0
0
3937
0
0
3937
0
0
0
0
0
0
0
...
15
13-10-16 09:50
5545
0
0
0
0
0
0
0
0
0
0
5545
0
0
0
0
0
0
0
...
16
13-10-16 10:00
8112
0
0
0
0
0
0
0
0
0
0
8112
0
0
0
0
0
0
0
...
17
13-10-16 10:10
0
0
0
0
0
0
0
0
8112
0
0
8112
0
0
0
0
0
0
0
...
18
13-10-16 10:20
0
0
0
0
0
0
0
0
8646
0
0
8646
0
0
0
0
0
0
0
...
19
13-10-16 10:30
8337
0
0
0
0
0
0
0
0
0
0
8337
0
0
0
0
0
0
0
...
20
13-10-16 10:40
9243
0
0
0
0
0
0
0
0
0
0
9243
0
0
0
0
0
0
0
...
21
13-10-16 10:50
0
0
0
0
0
0
0
0
9243
0
0
9243
0
0
0
0
0
0
0
...
22
13-10-16 11:00
0
0
0
0
0
0
0
0
3623
0
0
3623
0
0
0
0
0
0
0
...
23
13-10-16 11:10
0
0
0
0
0
0
0
0
4487
0
0
4487
0
0
0
0
0
0
0
...
24
13-10-16 11:20
0
0
0
0
0
0
0
0
4201
0
0
4201
0
0
0
0
0
0
0
...
25
13-10-16 11:30
0
0
0
0
0
0
0
0
3759
0
0
3759
0
0
0
0
0
0
0
...
26
13-10-16 11:40
0
0
0
0
0
0
0
0
3693
0
0
3693
0
0
0
0
0
0
0
...
27
13-10-16 11:50
0
0
0
0
0
0
0
0
3501
0
0
3501
0
0
0
0
0
0
0
...
28
13-10-16 12:00
0
0
0
0
0
0
0
0
5241
0
0
5241
0
0
0
0
0
0
0
...
29
13-10-16 12:10
9600
0
0
0
0
0
0
0
0
0
0
9600
0
0
0
0
0
0
0
...
30
13-10-16 12:20
0
0
0
0
0
0
0
0
9600
0
0
9600
0
0
0
0
0
0
0
...
31
13-10-16 12:30
0
0
0
0
0
0
0
0
8126
0
0
8126
0
0
0
0
0
0
0
...
32
13-10-16 12:40
0
0
0
0
0
0
0
0
10770
0
0
10770
0
0
0
0
0
0
0
...
33
13-10-16 12:50
0
0
0
0
0
0
0
0
3107
0
0
3107
0
0
0
0
0
0
0
...
34
13-10-16 13:00
0
0
0
0
0
0
0
0
2331
0
0
2331
0
0
0
0
0
0
0
...
35
13-10-16 13:10
0
0
0
0
0
0
0
0
2212
0
0
2212
0
0
0
0
0
0
0
...
36
13-10-16 13:20
0
0
0
0
0
0
0
0
2557
0
0
2557
0
0
0
0
0
0
0
...
37
13-10-16 13:30
0
0
0
0
0
0
0
0
4100
0
0
4100
0
0
0
0
0
0
0
...
38
13-10-16 13:40
0
0
0
0
0
0
0
0
4684
0
0
4684
0
0
0
0
0
0
0
...
39
13-10-16 13:50
0
0
0
0
0
0
0
0
3176
0
0
3176
0
0
0
0
0
0
0
...
40
13-10-16 14:00
0
0
0
0
0
0
0
0
6930
0
0
6930
0
0
0
0
0
0
0
...
41
13-10-16 14:10
2039
0
0
0
0
0
0
0
0
0
0
2039
0
0
0
0
0
0
0
...
42
13-10-16 14:20
0
0
0
0
0
0
0
0
2039
0
0
2039
0
0
0
0
0
0
0
...
43
13-10-16 14:30
0
0
0
0
0
0
0
0
2102
0
0
2102
0
0
0
0
0
0
0
...
44
13-10-16 14:40
0
0
0
0
0
0
0
0
2047
0
0
2047
0
0
0
0
0
0
0
...
45
13-10-16 14:50
0
0
0
0
0
0
0
0
1771
0
0
1771
0
0
0
0
0
0
0
...
46
13-10-16 15:00
1528
0
0
0
0
0
0
0
0
0
0
1528
0
0
0
0
0
0
0
...
47
13-10-16 15:10
0
0
0
0
0
0
0
0
1528
0
0
1528
0
0
0
0
0
0
0
...
48
13-10-16 15:20
0
0
0
0
0
0
0
0
1302
0
0
1302
0
0
0
0
0
0
0
...
49
13-10-16 15:30
0
0
0
0
0
0
0
0
987
0
0
987
0
0
0
0
0
0
0
...
50
13-10-16 15:40
0
0
0
0
0
0
0
0
916
0
0
916
0
0
0
0
0
0
0
...
51
13-10-16 15:50
0
0
0
0
0
0
0
0
830
0
0
830
0
0
0
0
0
0
0
...
52
13-10-16 16:00
0
0
0
0
0
0
0
0
746
0
0
746
0
0
0
0
0
0
0
...
53
13-10-16 16:10
0
0
0
0
0
0
0
0
514
0
0
514
0
0
0
0
0
0
0
...
54
13-10-16 16:20
0
0
0
0
0
0
0
0
381
0
0
381
0
0
0
0
0
0
0
...
55
13-10-16 16:30
0
0
0
0
0
0
0
0
274
0
0
274
0
0
0
0
0
0
0
...
56
13-10-16 16:40
0
0
0
0
0
0
0
0
213
0
0
213
0
0
0
0
0
0
0
...
57
13-10-16 16:50
0
0
0
0
0
0
0
0
156
0
0
156
0
0
0
0
0
0
0
...
58
13-10-16 17:00
0
0
0
0
0
0
0
0
76
0
0
76
0
0
0
0
0
0
0
...
59
13-10-16 17:10
0
0
0
0
0
0
0
0
30
0
0
30
0
0
0
0
0
0
0
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
33535 rows × 87 columns
In [29]:
import time
In [33]:
time.strftime("%y%m%d%H%M")
Out[33]:
'1406051916'
In [ ]:
Content source: Anton04/SolarDataRESTfulAPI
Similar notebooks: