In [1]:
include("../src/lib/readconfig.jl");
config = readconfig("../configs/complete.yml")
config["startmonth"] = "1/1950"
config["timestep"] = 12;

In [2]:
include("../src/world.jl");
include("../src/weather.jl");


Loading from saved region network...
WARNING: Base.String is deprecated, use AbstractString instead.
  likely near /Users/jrising/.julia/v0.4/Graphs/src/common.jl:3
WARNING: Base.String is deprecated, use AbstractString instead.
  likely near /Users/jrising/.julia/v0.4/Graphs/src/dot.jl:80
WARNING: imported binding for edges overwritten in module Main
Loading from saved water network...

In [10]:
include("../src/UnivariateAgriculture.jl");


Loading from saved region network...
WARNING: replacing module _mimi_implementation_UnivariateAgriculture

In [11]:
model = newmodel();
agriculture = initunivariateagriculture(model);
run(model);

In [5]:
fipsmapping = readtable(datapath("agriculture/allyears/Master_Spreadsheet_All.csv"));

In [12]:
dfbycy = DataFrame(crop=String[], fips=String[], year=Int64[], obsyield=Float64[], estyield=Float64[], obsprod=Float64[], estprod=Float64[])
cropunits = Dict{String, String}()
for cc in 1:length(allcrops)
    crop = allcrops[cc]
    println(crop)
    prodpath = findcroppath("agriculture/allyears/", crop, "_production_in_bu.csv")
    cropunits[crop] = "bu"
    if prodpath == nothing
        prodpath = findcroppath("agriculture/allyears/", crop, "_production_in_lb.csv")
        cropunits[crop] = "lb"
    end
    areapath = findcroppath("agriculture/allyears/", crop, "_area_planted_in_acre.csv")
    areacolumn = "AREA_PLANTED_"
    if areapath == nothing
        areapath = findcroppath("agriculture/allyears/", crop, "_area_harvested_in_acre.csv")
        areacolumn = "AREA_HARVESTED_"
    end
    obsprods = readtable(prodpath)
    obsareas = readtable(areapath)
    estprods = model[:UnivariateAgriculture, :production][:, cc, :]
    estyields = model[:UnivariateAgriculture, :yield2][:, cc, :]
    for ii in 1:nrow(masterregions) #[1318]
        if ii % 300 == 0
            println(ii)
        end
        fidrows = fipsmapping[:, :FIPS] .== parse(Int64, masterregions[ii, :fips]);
        if sum(fidrows) == 1
            fid = fipsmapping[fidrows, :FID][1]
            for year in 1950:2010
                obsprod = obsprods[obsprods[:cnty_FID] .== fid, symbol("PRODUCTION_$year")]
                obsarea = obsareas[obsareas[:cnty_FID] .== fid, symbol("$areacolumn$year")]
                estprod = estprods[ii, 1, year - 1950 + 1]
                estyield = estyields[ii, 1, year - 1950 + 1]
                if !isna(obsprod[1])
                    push!(dfbycy, [crop masterregions[ii, :fips] year obsprod[1]/obsarea[1] estyield obsprod estprod])
                end
            end
        end
    end
end


barley
300
600
900
1200
1500
1800
2100
2400
2700
3000
corn
300
600
900
1200
1500
1800
2100
2400
2700
3000
sorghum
300
600
900
1200
1500
1800
2100
2400
2700
3000
soybeans
300
600
900
1200
1500
1800
2100
2400
2700
3000
wheat
300
600
900
1200
1500
1800
2100
2400
2700
3000
hay
300
600
900
1200
1500
1800
2100
2400
2700
3000

In [13]:
using RCall
RCall.ijulia_setdevice(MIME("image/png"),width=8*72,height=5*72)
R"library(ggplot2)"
R"ggplot($dfbycy, aes(obsyield, estyield)) + facet_wrap(~ crop, scales=\"free\") + geom_point(alpha=.1) + geom_smooth(method = \"lm\") + xlab(\"Observed Yield\") + ylab(\"Estimated Yield\") + theme_bw()"


Out[13]:
RCall.RObject{RCall.VecSxp}
WARNING: Warning: Removed 71246 rows containing non-finite values (stat_smooth).
Warning: Removed 71246 rows containing missing values (geom_point).

In [14]:
codf = dfbycy[map(fips -> fips[1:2], dfbycy[:fips]) .== "08",:]
R"library(ggplot2)"
R"ggplot($codf, aes(obsyield, estyield)) + facet_wrap(~ crop, scales=\"free\") + geom_point(alpha=.1) + geom_smooth(method = \"lm\") + xlab(\"Observed Yield\") + ylab(\"Estimated Yield\") + theme_bw()"


Out[14]:
RCall.RObject{RCall.VecSxp}
WARNING: Warning: Removed 6 rows containing non-finite values (stat_smooth).
Warning: Removed 6 rows containing missing values (geom_point).

In [22]:
dfbyy = DataFrame(fips=String[], year=Int64[], obsirrig=Float64[], estirrig=Float64[])

obsirrigs = readtable("../data/counties/extraction/allyear_irrigation.csv")
estirrigs = model[:UnivariateAgriculture, :totalirrigation]

for ii in 1:nrow(masterregions)
    if ii % 300 == 0
        println(ii)
    end
    for year in 1985:5:2010
        obsirrig = obsirrigs[obsirrigs[:FIPS] .== parse(Int64, masterregions[ii, :fips]), symbol("IR_To_$year")] * 1381.6753 # Mgal/d to 1000 m^3
        estirrig = estirrigs[ii, year - 1950 + 1]
        push!(dfbyy, [masterregions[ii, :fips] year obsirrig estirrig])
    end
end


300
600
900
1200
1500
1800
2100
2400
2700
3000

In [26]:
using RCall
RCall.ijulia_setdevice(MIME("image/png"),width=8*72,height=5*72)
R"library(ggplot2)"
R"ggplot($dfbyy, aes(obsirrig, estirrig)) + geom_point() + geom_smooth(method = \"lm\") + xlab(\"Observed Irrigation\") + ylab(\"Estimated Irrigation\") + theme_bw() + scale_x_log10() + scale_y_log10()"


Out[26]:
RCall.RObject{RCall.VecSxp}
WARNING: Warning: Removed 5828 rows containing non-finite values (stat_smooth).
Warning: Removed 1 rows containing missing values (geom_point).

In [27]:
codf = dfbyy[map(fips -> fips[1:2], dfbyy[:fips]) .== "08",:]
R"library(ggplot2)"
R"ggplot($codf, aes(obsirrig, estirrig)) + geom_point() + geom_smooth(method = \"lm\") + xlab(\"Observed Irrigation\") + ylab(\"Estimated Irrigation\") + theme_bw() + scale_x_log10() + scale_y_log10()"


Out[27]:
RCall.RObject{RCall.VecSxp}
WARNING: Warning: Removed 144 rows containing non-finite values (stat_smooth).

In [ ]: