In [1]:
import pandas as pd
def fix_data(path):
tmp = pd.read_csv(path, encoding="gbk", engine='python')
tmp.rename(columns={'Unnamed: 0': 'trading_time'}, inplace=True)
tmp['trading_point'] = pd.to_datetime(tmp.trading_time)
del tmp['trading_time']
return tmp.set_index(tmp.trading_point)
def high2low(tmp, freq):
"""处理从RiceQuant下载的分钟线数据,
从分钟线数据合成低频数据
2017-08-11
"""
# 分别处理bar数据
tmp_open = tmp['open'].resample(freq).ohlc()
tmp_open = tmp_open['open'].dropna()
tmp_high = tmp['high'].resample(freq).ohlc()
tmp_high = tmp_high['high'].dropna()
tmp_low = tmp['low'].resample(freq).ohlc()
tmp_low = tmp_low['low'].dropna()
tmp_close = tmp['close'].resample(freq).ohlc()
tmp_close = tmp_close['close'].dropna()
tmp_price = pd.concat([tmp_open, tmp_high, tmp_low, tmp_close], axis=1)
# 处理成交量
tmp_volume = tmp['volume'].resample(freq).sum()
tmp_volume.dropna(inplace=True)
return pd.concat([tmp_price, tmp_volume], axis=1)
In [2]:
import pandas as pd
import talib
def get_factors(index,
opening,
closing,
highest,
lowest,
volume,
rolling=26,
drop=False,
normalization=True):
tmp = pd.DataFrame()
tmp['tradeTime'] = index
# 累积/派发线(Accumulation / Distribution Line,该指标将每日的成交量通过价格加权累计,
# 用以计算成交量的动量。属于趋势型因子
tmp['AD'] = talib.AD(highest, lowest, closing, volume)
# 佳庆指标(Chaikin Oscillator),该指标基于AD曲线的指数移动均线而计算得到。属于趋势型因子
tmp['ADOSC'] = talib.ADOSC(highest, lowest, closing, volume, fastperiod=3, slowperiod=10)
# 平均动向指数,DMI因子的构成部分。属于趋势型因子
tmp['ADX'] = talib.ADX(highest, lowest, closing, timeperiod=14)
# 相对平均动向指数,DMI因子的构成部分。属于趋势型因子
tmp['ADXR'] = talib.ADXR(highest, lowest, closing, timeperiod=14)
# 绝对价格振荡指数
tmp['APO'] = talib.APO(closing, fastperiod=12, slowperiod=26)
# Aroon通过计算自价格达到近期最高值和最低值以来所经过的期间数,
# 帮助投资者预测证券价格从趋势到区域区域或反转的变化,
# Aroon指标分为Aroon、AroonUp和AroonDown3个具体指标。属于趋势型因子
tmp['AROONDown'], tmp['AROONUp'] = talib.AROON(highest, lowest, timeperiod=14)
tmp['AROONOSC'] = talib.AROONOSC(highest, lowest, timeperiod=14)
# 均幅指标(Average TRUE Ranger),取一定时间周期内的股价波动幅度的移动平均值,
# 是显示市场变化率的指标,主要用于研判买卖时机。属于超买超卖型因子。
tmp['ATR14'] = talib.ATR(highest, lowest, closing, timeperiod=14)
tmp['ATR6'] = talib.ATR(highest, lowest, closing, timeperiod=6)
# 布林带
tmp['Boll_Up'], tmp['Boll_Mid'], tmp['Boll_Down'] = \
talib.BBANDS(closing, timeperiod=20, nbdevup=2, nbdevdn=2, matype=0)
# 均势指标
tmp['BOP'] = talib.BOP(opening, highest, lowest, closing)
# 5日顺势指标(Commodity Channel Index),专门测量股价是否已超出常态分布范围。属于超买超卖型因子。
tmp['CCI5'] = talib.CCI(highest, lowest, closing, timeperiod=5)
tmp['CCI10'] = talib.CCI(highest, lowest, closing, timeperiod=10)
tmp['CCI20'] = talib.CCI(highest, lowest, closing, timeperiod=20)
tmp['CCI88'] = talib.CCI(highest, lowest, closing, timeperiod=88)
# 钱德动量摆动指标(Chande Momentum Osciliator),与其他动量指标摆动指标如
# 相对强弱指标(RSI)和随机指标(KDJ)不同,
# 钱德动量指标在计算公式的分子中采用上涨日和下跌日的数据。属于超买超卖型因子
tmp['CMO_Close'] = talib.CMO(closing, timeperiod=14)
tmp['CMO_Open'] = talib.CMO(closing, timeperiod=14)
# DEMA双指数移动平均线
tmp['DEMA6'] = talib.DEMA(closing, timeperiod=6)
tmp['DEMA12'] = talib.DEMA(closing, timeperiod=12)
tmp['DEMA26'] = talib.DEMA(closing, timeperiod=26)
# DX 动向指数
tmp['DX'] = talib.DX(highest, lowest, closing, timeperiod=14)
# EMA 指数移动平均线
tmp['EMA6'] = talib.EMA(closing, timeperiod=6)
tmp['EMA12'] = talib.EMA(closing, timeperiod=12)
tmp['EMA26'] = talib.EMA(closing, timeperiod=26)
# KAMA 适应性移动平均线
tmp['KAMA'] = talib.KAMA(closing, timeperiod=30)
# MACD
tmp['MACD_DIF'], tmp['MACD_DEA'], tmp['MACD_bar'] = \
talib.MACD(closing, fastperiod=12, slowperiod=24, signalperiod=9)
# 中位数价格 不知道是什么意思
tmp['MEDPRICE'] = talib.MEDPRICE(highest, lowest)
# 负向指标 负向运动
tmp['MiNUS_DI'] = talib.MINUS_DI(highest, lowest, closing, timeperiod=14)
tmp['MiNUS_DM'] = talib.MINUS_DM(highest, lowest, timeperiod=14)
# 动量指标(Momentom Index),动量指数以分析股价波动的速度为目的,研究股价在波动过程中各种加速,
# 减速,惯性作用以及股价由静到动或由动转静的现象。属于趋势型因子
tmp['MOM'] = talib.MOM(closing, timeperiod=10)
# 归一化平均值范围
tmp['NATR'] = talib.NATR(highest, lowest, closing, timeperiod=14)
# OBV 能量潮指标(On Balance Volume,OBV),以股市的成交量变化来衡量股市的推动力,
# 从而研判股价的走势。属于成交量型因子
tmp['OBV'] = talib.OBV(closing, volume)
# PLUS_DI 更向指示器
tmp['PLUS_DI'] = talib.PLUS_DI(highest, lowest, closing, timeperiod=14)
tmp['PLUS_DM'] = talib.PLUS_DM(highest, lowest, timeperiod=14)
# PPO 价格振荡百分比
tmp['PPO'] = talib.PPO(closing, fastperiod=6, slowperiod=26, matype=0)
# ROC 6日变动速率(Price Rate of Change),以当日的收盘价和N天前的收盘价比较,
# 通过计算股价某一段时间内收盘价变动的比例,应用价格的移动比较来测量价位动量。属于超买超卖型因子。
tmp['ROC6'] = talib.ROC(closing, timeperiod=6)
tmp['ROC20'] = talib.ROC(closing, timeperiod=20)
# 12日量变动速率指标(Volume Rate of Change),以今天的成交量和N天前的成交量比较,
# 通过计算某一段时间内成交量变动的幅度,应用成交量的移动比较来测量成交量运动趋向,
# 达到事先探测成交量供需的强弱,进而分析成交量的发展趋势及其将来是否有转势的意愿,
# 属于成交量的反趋向指标。属于成交量型因子
tmp['VROC6'] = talib.ROC(volume, timeperiod=6)
tmp['VROC20'] = talib.ROC(volume, timeperiod=20)
# ROC 6日变动速率(Price Rate of Change),以当日的收盘价和N天前的收盘价比较,
# 通过计算股价某一段时间内收盘价变动的比例,应用价格的移动比较来测量价位动量。属于超买超卖型因子。
tmp['ROCP6'] = talib.ROCP(closing, timeperiod=6)
tmp['ROCP20'] = talib.ROCP(closing, timeperiod=20)
# 12日量变动速率指标(Volume Rate of Change),以今天的成交量和N天前的成交量比较,
# 通过计算某一段时间内成交量变动的幅度,应用成交量的移动比较来测量成交量运动趋向,
# 达到事先探测成交量供需的强弱,进而分析成交量的发展趋势及其将来是否有转势的意愿,
# 属于成交量的反趋向指标。属于成交量型因子
tmp['VROCP6'] = talib.ROCP(volume, timeperiod=6)
tmp['VROCP20'] = talib.ROCP(volume, timeperiod=20)
# RSI
tmp['RSI'] = talib.RSI(closing, timeperiod=14)
# SAR 抛物线转向
tmp['SAR'] = talib.SAR(highest, lowest, acceleration=0.02, maximum=0.2)
# TEMA
tmp['TEMA6'] = talib.TEMA(closing, timeperiod=6)
tmp['TEMA12'] = talib.TEMA(closing, timeperiod=12)
tmp['TEMA26'] = talib.TEMA(closing, timeperiod=26)
# TRANGE 真实范围
tmp['TRANGE'] = talib.TRANGE(highest, lowest, closing)
# TYPPRICE 典型价格
tmp['TYPPRICE'] = talib.TYPPRICE(highest, lowest, closing)
# TSF 时间序列预测
tmp['TSF'] = talib.TSF(closing, timeperiod=14)
# ULTOSC 极限振子
tmp['ULTOSC'] = talib.ULTOSC(highest, lowest, closing, timeperiod1=7, timeperiod2=14, timeperiod3=28)
# 威廉指标
tmp['WILLR'] = talib.WILLR(highest, lowest, closing, timeperiod=14)
# 标准化
if normalization:
factors_list = tmp.columns.tolist()[1:]
if rolling >= 26:
for i in factors_list:
tmp[i] = (tmp[i] - tmp[i].rolling(window=rolling, center=False).mean())\
/ tmp[i].rolling(window=rolling, center=False).std()
elif rolling < 26 & rolling > 0:
print('Recommended rolling range greater than 26')
elif rolling <= 0:
for i in factors_list:
tmp[i] = (tmp[i] - tmp[i].mean()) / tmp[i].std()
if drop:
tmp.dropna(inplace=True)
return tmp.set_index('tradeTime')
In [4]:
import numpy as np
import pandas as pd
quotes = fix_data('env2_simple_HS300.csv')
quotes = high2low(quotes, '5min')
daily_quotes = high2low(quotes, '1d')
Index = quotes.index
High = quotes.high.values
Low = quotes.low.values
Close = quotes.close.values
Open = quotes.open.values
Volume = quotes.volume.values
factors = get_factors(Index, Open, Close, High, Low, Volume, rolling=188, drop=True)
daily_quotes['returns'] = np.log(daily_quotes['close'].shift(-1) / daily_quotes['close'])
daily_quotes.dropna(inplace=True)
start_date = pd.to_datetime('2011-01-12')
end_date = pd.to_datetime('2016-12-29')
daily_quotes = daily_quotes.loc[start_date:end_date]
daily_quotes = daily_quotes.iloc[5:]
factors = factors.loc[start_date:end_date]
fac_list = []
for i in range(len(daily_quotes)):
s = i * 50
e = (i + 5) * 50
f = np.array(factors.iloc[s:e])
fac_list.append(np.expand_dims(f, axis=0))
fac_array = np.concatenate(fac_list, axis=0)
shape = [fac_array.shape[0], 5, 50, fac_array.shape[2]]
fac_array = fac_array.reshape(shape)
fac_array = np.transpose(fac_array, [0, 2, 3, 1])
DATE_QUOTES = daily_quotes
DATA_FAC = fac_array
class Account(object):
def __init__(self):
self.data_close = DATE_QUOTES['close']
self.data_open = DATE_QUOTES['open']
self.data_observation = DATA_FAC
self.action_space = ['long', 'short', 'close']
self.free = 1e-4
self.reset()
def reset(self):
self.step_counter = 0
self.cash = 1e5
self.position = 0
self.total_value = self.cash + self.position
self.flags = 0
return self._get_initial_state()
def _get_initial_state(self):
return self.data_observation[0]
def get_action_space(self):
return self.action_space
def long(self):
self.flags = 1
quotes = self.data_open[self.step_counter] * 10
self.cash -= quotes * (1 + self.free)
self.position = quotes
def short(self):
self.flags = -1
quotes = self.data_open[self.step_counter] * 10
self.cash += quotes * (1 - self.free)
self.position = - quotes
def keep(self):
quotes = self.data_open[self.step_counter] * 10
self.position = quotes * self.flags
def close_long(self):
self.flags = 0
quotes = self.data_open[self.step_counter] * 10
self.cash += quotes * (1 - self.free)
self.position = 0
def close_short(self):
self.flags = 0
quotes = self.data_open[self.step_counter] * 10
self.cash -= quotes * (1 + self.free)
self.position = 0
def step_op(self, action):
if action == 'long':
if self.flags == 0:
self.long()
elif self.flags == -1:
self.close_short()
self.long()
else:
self.keep()
elif action == 'close':
if self.flags == 1:
self.close_long()
elif self.flags == -1:
self.close_short()
else:
pass
elif action == 'short':
if self.flags == 0:
self.short()
elif self.flags == 1:
self.close_long()
self.short()
else:
self.keep()
else:
raise ValueError("action should be elements of ['long', 'short', 'close']")
position = self.data_close[self.step_counter] * 10 * self.flags
reward = self.cash + position - self.total_value
self.step_counter += 1
self.total_value = position + self.cash
next_observation = self.data_observation[self.step_counter]
done = False
if self.total_value < 4000:
done = True
if self.step_counter > 1000:
done = True
return reward, next_observation, done
def step(self, action):
if action == 0:
return self.step_op('long')
elif action == 1:
return self.step_op('short')
elif action == 2:
return self.step_op('close')
else:
raise ValueError("action should be one of [0,1,2]")
In [5]:
import tensorflow as tf
from sonnet.python.modules.basic import Linear as sntLinear
from sonnet.python.modules.conv import Conv2D as sntConv2D
def swich(input):
return input * tf.nn.sigmoid(input)
def Linear(name, output_size):
initializers = {"w": tf.truncated_normal_initializer(stddev=0.1),
"b": tf.constant_initializer(value=0.1)}
regularizers = {"w": tf.contrib.layers.l2_regularizer(scale=0.1),
"b": tf.contrib.layers.l2_regularizer(scale=0.1)}
return sntLinear(output_size,
initializers=initializers,
regularizers=regularizers,
name=name)
def Conv2D(name, output_channels, kernel_shape, stride):
initializers = {"w": tf.truncated_normal_initializer(stddev=0.1),
"b": tf.constant_initializer(value=0.1)}
regularizers = {"w": tf.contrib.layers.l2_regularizer(scale=0.1),
"b": tf.contrib.layers.l2_regularizer(scale=0.1)}
return sntConv2D(output_channels,
kernel_shape,
stride,
initializers=initializers,
regularizers=regularizers,
name=name)
In [7]:
import tensorflow as tf
from sonnet.python.modules.base import AbstractModule
#from util import Linear, Conv2D, swich
class ConvNet(AbstractModule):
def __init__(self, name):
super().__init__(name=name)
def _build(self, inputs, output_size):
network = Conv2D('input_layer', 16, [8, 8], [4, 4])(inputs)
network = swich(network)
network = Conv2D('hidden_layer', 32, [4, 4], [2, 2])(network)
network = swich(network)
network = tf.contrib.layers.flatten(network)
network = Linear('final_layer', 64)(network)
network = swich(network)
return Linear('output_layer', output_size)(network)
def get_regularization(self):
return self.get_variables(tf.GraphKeys.REGULARIZATION_LOSSES)
In [8]:
LEARNING_RATE = 1e-4
DECAY_RATE = .9
class Access(object):
def __init__(self, state_size, action_size):
with tf.variable_scope('Access'):
# placeholder
self.inputs = tf.placeholder(tf.float32, [None] + state_size, "states")
self.actions = tf.placeholder(tf.int32, [None], "actions")
self.targets = tf.placeholder(tf.float32, [None], "discounted_rewards")
# network interface
self.actor = ConvNet('actor')
self.critic = ConvNet('critic')
self.policy = tf.nn.softmax(self.actor(self.inputs, action_size))
self.value = self.critic(self.inputs, 1)
# global optimizer
self.optimizer_actor = tf.train.RMSPropOptimizer(
LEARNING_RATE, DECAY_RATE, name='optimizer_actor')
self.optimizer_critic = tf.train.RMSPropOptimizer(
LEARNING_RATE, DECAY_RATE, name='optimizer_critic')
# saver
var_list = self.get_trainable()
var_list = list(var_list[0] + var_list[1])
self.saver = tf.train.Saver(var_list=var_list)
def get_trainable(self):
return [self.actor.get_variables(), self.critic.get_variables()]
def save(self, sess, path):
self.saver.save(sess, path)
def restore(self, sess, path):
var_list = list(self.get_trainable()[0] + self.get_trainable()[1])
saver = tf.train.Saver(var_list=var_list)
saver.restore(sess, path)
In [9]:
_EPSILON = 1e-6 # avoid nan
MAX_GRAD_NORM = 50
ENTROPY_BETA = 0.1
POLICY_BETA = 1
VALUE_BETA = 1
ACTOR_NORM_BETA = 1e-3
CRITIC_NORM_BETA = 0.1
# local network for advantage actor-critic which are also know as A2C
class ConvACNet(object):
def __init__(self, access, state_size, action_size, scope_name):
self.Access = access
self.action_size = action_size
self.action_space = list(range(action_size))
with tf.variable_scope(scope_name):
# placeholder
self.inputs = tf.placeholder(tf.float32, [None] + state_size, "states")
self.actions = tf.placeholder(tf.int32, [None], "actions")
self.targets = tf.placeholder(tf.float32, [None], "discounted_rewards")
# network interface
self.actor = ConvNet('actor')
self.critic = ConvNet('critic')
self.policy = tf.nn.softmax(self.actor(self.inputs, self.action_size))
self.value = self.critic(self.inputs, 1)
self.policy_step = tf.squeeze(self.policy, axis=0)
self.greedy_action = tf.argmax(self.policy_step)
# losses
self._build_losses()
# async framework
self._build_async_interface()
self._build_interface()
print('graph %s' % (str(scope_name)))
def _build_losses(self):
# value loss
targets = tf.expand_dims(self.targets, axis=1)
self.advantage = targets - self.value
self.value_loss = tf.reduce_mean(tf.square(self.advantage))
# policy loss
action_gather = tf.one_hot(self.actions, self.action_size)
policy_action = tf.reduce_sum(self.policy * action_gather,
axis=1, keep_dims=True)
log_policy_action = tf.log(policy_action + _EPSILON)
self.policy_loss = -tf.reduce_mean(
tf.stop_gradient(self.advantage) * log_policy_action)
# entropy loss
entropy_loss = tf.reduce_sum(self.policy * tf.log(self.policy + _EPSILON),
axis=1, keep_dims=True)
self.entropy_loss = tf.reduce_mean(entropy_loss)
# regularization
self.actor_norm = tf.add_n(self.actor.get_regularization()) * ACTOR_NORM_BETA
self.critic_norm = tf.add_n(self.critic.get_regularization()) * CRITIC_NORM_BETA
# total loss
self.actor_loss = self.policy_loss + ENTROPY_BETA * self.entropy_loss + self.actor_norm
self.critic_loss = self.value_loss + self.critic_norm
# interface adjustment parameters
self.a_actor_loss = self.actor_loss
self.a_policy_mean = -tf.reduce_mean(log_policy_action)
self.a_policy_loss = self.policy_loss
self.a_entropy_loss = ENTROPY_BETA * self.entropy_loss
self.a_actor_norm = self.actor_norm
self.a_critic_loss = self.critic_loss
self.a_value_loss = self.value_loss
self.a_critic_norm = self.critic_norm
self.a_value_mean = tf.reduce_mean(self.value)
self.a_advantage = tf.reduce_mean(self.advantage)
def _build_interface(self):
self.a_interface = [self.a_actor_loss,
self.a_actor_grad,
self.a_policy_mean,
self.a_policy_loss,
self.a_entropy_loss,
self.a_actor_norm,
self.a_critic_loss,
self.a_critic_grad,
self.a_value_loss,
self.a_critic_norm,
self.a_value_mean,
self.a_advantage]
def _build_async_interface(self):
global_actor_params, global_critic_params = self.Access.get_trainable()
local_actor_params, local_critic_params = self.get_trainable()
actor_grads = tf.gradients(self.actor_loss, list(local_actor_params))
critic_grads = tf.gradients(self.critic_loss, list(local_critic_params))
# Set up optimizer with global norm clipping.
actor_grads, self.a_actor_grad = tf.clip_by_global_norm(actor_grads, MAX_GRAD_NORM)
critic_grads, self.a_critic_grad = tf.clip_by_global_norm(critic_grads, MAX_GRAD_NORM)
# update Access
actor_apply = self.Access.optimizer_actor.apply_gradients(
zip(list(actor_grads), list(global_actor_params)))
critic_apply = self.Access.optimizer_critic.apply_gradients(
zip(list(critic_grads), list(global_critic_params)))
self.update_global = [actor_apply, critic_apply]
# update ACNet
assign_list = []
for gv, lv in zip(global_actor_params, local_actor_params):
assign_list.append(tf.assign(lv, gv))
for gv, lv in zip(global_critic_params, local_critic_params):
assign_list.append(tf.assign(lv, gv))
self.update_local = assign_list
def get_trainable(self):
return [self.actor.get_variables(), self.critic.get_variables()]
def get_policy(self, sess, inputs):
return sess.run(self.policy, {self.inputs: inputs})
def get_stochastic_action(self, sess, inputs, epsilon=0.95):
# get stochastic action for train
if np.random.uniform() < epsilon:
policy = sess.run(self.policy_step, {self.inputs: np.expand_dims(inputs, axis=0)})
return np.random.choice(self.action_space, 1, p=policy)[0]
else:
return np.random.randint(self.action_size)
def get_deterministic_policy_action(self, sess, inputs):
# get deterministic action for test
return sess.run(self.greedy_action, {self.inputs: np.expand_dims(inputs, axis=0)})
def get_value(self, sess, inputs):
return sess.run(self.value, {self.inputs: inputs})
def train_step(self, sess, inputs, actions, targets):
feed_dict = {self.inputs: inputs,
self.actions: actions,
self.targets: targets}
sess.run(self.update_global, feed_dict)
def init_network(self, sess):
"""
init or update local network
:param sess:
:return:
"""
sess.run(self.update_local)
def get_losses(self, sess, inputs, actions, targets):
"""
get all loss functions of network
:param sess:
:param inputs:
:param actions:
:param targets:
:return:
"""
feed_dict = {self.inputs: inputs,
self.actions: actions,
self.targets: targets}
return sess.run(self.a_interface, feed_dict)
In [10]:
MAX_EPISODE_LENGTH = 1000
MAX_EPISODES = 1000
GAMMA = .9
class ExplorerFramework(object):
def __init__(self, access, name, observation, action_size):
self.Access = access
self.AC = ConvACNet(self.Access, observation, action_size, name)
self.env = Account()
self.name = name
def get_bootstrap(self, done, sess, next_state):
if done:
terminal = 0
else:
terminal = self.AC.get_value(
sess, np.expand_dims(next_state, axis=0))[0][0]
return terminal
def get_output(self, sess, inputs, actions, targets):
return self.AC.get_losses(sess, inputs, actions, targets)
def run(self, sess, max_episodes, t_max=32):
episode = 0
while episode < max_episodes:
episode += 1
_ = self.run_episode(sess, t_max)
def run_episode(self, sess, t_max=32):
t_start = t = 0
episode_score = 0
buffer_state = []
buffer_action = []
buffer_reward = []
self.AC.init_network(sess)
state = self.env.reset()
while True:
t += 1
action = self.AC.get_stochastic_action(sess, state)
reward, next_state, done = self.env.step(action)
# buffer for loop
episode_score += reward
buffer_state.append(state)
buffer_action.append(action)
buffer_reward.append(reward)
state = next_state
if t - t_start == t_max or done:
t_start = t
terminal = self.get_bootstrap(done, sess, next_state)
buffer_target = []
for r in buffer_reward[::-1]:
terminal = r + GAMMA * terminal
buffer_target.append(terminal)
buffer_target.reverse()
inputs = np.stack(buffer_state, axis=0)
actions = np.squeeze(np.vstack(buffer_action), axis=1)
targets = np.squeeze(np.vstack(buffer_target), axis=1)
buffer_state = []
buffer_action = []
buffer_reward = []
# update Access gradients
self.AC.train_step(sess, inputs, actions, targets)
# update local network
self.AC.init_network(sess)
if done or t > MAX_EPISODE_LENGTH:
if self.name == 'W0':
outputs = tuple(self.get_output(sess, inputs, actions, targets))
print('actor: %f, actor_grad: %f, policy mean: %f, policy: %f, entropy: %f, actor_norm: %f, '
'critic: %f, critic_grad: %f, value: %f, critic_norm: %f, value_mean: %f, advantage: %f'
% outputs)
return episode_score
In [11]:
import multiprocessing
import threading
import numpy as np
NUMS_CPU = multiprocessing.cpu_count()
state_size = [50, 58, 5]
action_size = 3
max_episodes = 10
GD = {}
class Worker(ExplorerFramework):
def __init__(self, access, name, observation, action_size):
super().__init__(access, name, observation, action_size)
def run(self, sess, max_episodes, t_max=32):
episode_score_list = []
episode = 0
while episode < max_episodes:
episode += 1
episode_socre = self.run_episode(sess, t_max)
episode_score_list.append(episode_socre)
GD[str(self.name)] = episode_score_list
if self.name == 'W0':
print('Episode: %f, score: %f' % (episode, episode_socre))
print('\n')
with tf.Session() as sess:
with tf.device("/cpu:0"):
A = Access(state_size, action_size)
F_list = []
for i in range(NUMS_CPU):
F_list.append(Worker(A, 'W%i' % i, state_size, action_size))
COORD = tf.train.Coordinator()
sess.run(tf.global_variables_initializer())
sess.graph.finalize()
threads_list = []
for ac in F_list:
job = lambda: ac.run(sess, max_episodes)
t = threading.Thread(target=job)
t.start()
threads_list.append(t)
COORD.join(threads_list)
A.save(sess, 'model/saver_1.ckpt')
In [12]:
import pandas as pd
import seaborn as sns
%matplotlib inline
tmp = pd.DataFrame(GD)
tmp.iloc[:500,:1].plot(figsize=(16,6))
Out[12]:
In [13]:
tmp.plot(figsize=(16,6))
Out[13]:
In [14]:
state_size = [50, 58, 5]
action_size = 3
tf.reset_default_graph()
with tf.Session() as sess:
with tf.device("/cpu:0"):
A = Access(state_size, action_size)
W = ConvACNet(A, state_size, action_size, 'AC')
A.restore(sess,'model/saver_1.ckpt')
W.init_network(sess)
env = Account()
state = env.reset()
net_value = []
reward_list = []
for _ in range(1400):
action = W.get_deterministic_policy_action(sess, state)
reward, state, done = env.step(action)
reward_list.append(reward)
net_value.append(env.total_value)
In [15]:
pd.Series(net_value[1000:]).plot(figsize=(16,6))
Out[15]:
In [ ]: