In [1]:
import pandas as pd
In [5]:
data = pd.read_csv('resources/svm-data.csv', header=None)
In [20]:
target = data[0]
features = data.loc[:, 1:]
In [22]:
from sklearn.svm import SVC
In [24]:
svc = SVC(kernel='linear', C=100000, random_state=241)
In [28]:
svc.fit(features, target)
Out[28]:
In [32]:
svc.support_
Out[32]:
In [42]:
import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(features,linestyle="",marker="o")
Out[42]: