Data Analysis of Baseball Database

The main purpose is to gain an overview of the dataset. Identify problems in the dataset that need to be corrected. Identify outliers and consider if these are real or erros in the dataset.

The data analysis process will look for relationships between independent and dependent variables. This is a preliminary data analysis and any inferences should not be treated as tentative.

The theme of this investigation is to ask if geographical location has an affect, if where a person was born, where the college was located has an impact on a dependent variable (e.g. Salary of player).


In [4]:
from __future__ import print_function
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import seaborn as sns
import os
# Use the top level of the repository
os.chdir(os.path.join("../.."))
# Helper functions made to create polished plots
from ballbase import figures

# Config the matplotlib backend as plotting inline in IPython
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

In [5]:
import Baseball_data_investigation
df = Baseball_data_investigation.main()
df.head()


Processed Hall of Fame data

Processed All Star data

Processed Player Awards data

Processed Salary data

Processed College Locations

Processed master file

Master_Merge is ready

Data Audit complete
Out[5]:
birthYear birthMonth birthDay birthCountry birthState birthCity deathYear deathMonth deathDay deathCountry ... max_salary min_salary mean_salary_standardized_annually max_salary_standardized_annually min_salary_standardized_annually mode_schoolID college_name_full college_city college_state college_country
playerID
aardsda01 1981.0 12.0 27.0 USA CO Denver NaN NaN NaN NaN ... 4500000.0 300000.0 -0.440097 0.260102 -0.670224 rice Rice University Houston TX USA
abadan01 1972.0 8.0 25.0 USA FL Palm Beach NaN NaN NaN NaN ... 327000.0 327000.0 -0.663649 -0.663649 -0.663649 gamiddl Middle Georgia College Cochran GA USA
abbeybe01 1869.0 11.0 11.0 USA VT Essex 1962.0 6.0 11.0 USA ... NaN NaN NaN NaN NaN vermont University of Vermont Burlington VT USA
abbotje01 1972.0 8.0 17.0 USA GA Atlanta NaN NaN NaN NaN ... 300000.0 175000.0 -0.644164 -0.598825 -0.690417 kentucky University of Kentucky Lexington KY USA
abbotji01 1967.0 9.0 19.0 USA MI Flint NaN NaN NaN NaN ... 2775000.0 68000.0 0.273098 1.275547 -0.814658 michigan University of Michigan Ann Arbor MI USA

5 rows × 44 columns

Awards Count


In [6]:
figures.count_bar(df['award_count'].dropna(),
            "Award count frequency",
            ax_size=(28, 6)
            )


Out[6]:
<matplotlib.axes._subplots.AxesSubplot at 0x16ae4d45b38>

In [171]:
figures.bar(df['award_count'].dropna(),
            "Mean of award count by birth State", 
            x_v=(
                 df[                             # From DataFrame
                    df['birthCountry'] == 'USA'  # Select only USA as birthCountry
                   ].sort_values(['birthState']) # Sort by birthState
                   ['birthState']),
            ax_size=(28, 6),
            highlight=0
            )


Out[171]:
<matplotlib.axes._subplots.AxesSubplot at 0x182682be0>

In [33]:
figures.bar(df['award_count'].dropna(),
            "Mean of award count by College State", 
            x_v=(
                 df[                                # From DataFrame
                    df['birthCountry'] == 'USA'     # Select only USA as birthCountry
                   ].sort_values(['college_state']) # Sort by CollegeState
                   ['college_state']),
            ax_size=(28, 6)
            )


Out[33]:
<matplotlib.axes._subplots.AxesSubplot at 0x11ae9a9b0>

In [170]:
sns.boxplot(x= (df[df['birthCountry'] == 'USA'].sort_values(['birthState'])['birthState']), 
            y=df['award_count'].dropna(), data=df, color="grey")


Out[170]:
<matplotlib.axes._subplots.AxesSubplot at 0x1838dd3c8>

In [169]:
sns.boxplot(x= (df[df['birthCountry'] == 'USA'].sort_values(['college_state'])['college_state']), 
            y=df['award_count'].dropna(), data=df, color="grey")


Out[169]:
<matplotlib.axes._subplots.AxesSubplot at 0x1986e1b00>

All star count


In [44]:
figures.bar(df['allstar_count'].dropna(),
            "Mean of award count by birth State", 
            x_v=(
                 df[                             # From DataFrame
                    df['birthCountry'] == 'USA'  # Select only USA as birthCountry
                   ].sort_values(['birthState']) # Sort by birthState
                   ['birthState']),
            ax_size=(28, 6),
            highlight=0
            )


Out[44]:
<matplotlib.axes._subplots.AxesSubplot at 0x139c8b6a0>

In [46]:
figures.bar(df['allstar_count'].dropna(),
            "Mean of award count by College State", 
            x_v=(
                 df[                                # From DataFrame
                    df['birthCountry'] == 'USA'     # Select only USA as birthCountry
                   ].sort_values(['college_state']) # Sort by CollegeState
                   ['college_state']),
            ax_size=(28, 6)
            )


Out[46]:
<matplotlib.axes._subplots.AxesSubplot at 0x11a82aef0>

In [165]:
sns.jointplot(x='allstar_count', y='award_count', data=df[['award_count', 'allstar_count']].dropna(), 
              s=40, alpha=0.1, color="grey", edgecolor="w", linewidth=1, size=8);
sns.despine(offset=2, trim=True, left=True, bottom=True)


Height and weight


In [164]:
sns.jointplot(x='weight', y='height', data=df[['weight', 'height']].dropna(), 
              s=40, alpha=0.1, color="grey", edgecolor="w", linewidth=1, size=8);
sns.despine(offset=2, trim=True, left=True, bottom=True)



In [163]:
sns.jointplot(x='weight', y='mean_salary', data=df[['weight', 'mean_salary']].dropna(), 
              s=40, alpha=0.1, color="grey", edgecolor="w", linewidth=1, size=8);
sns.despine(offset=2, trim=True, left=True, bottom=True)